Optics and Precision Engineering, Volume. 27, Issue 4, 756(2019)
Enhanced photovoltaic panel performance by geometry design of cover glass
[1] [1] ITRPV. International Technology Roadmap for Photovoltaic (ITRPV)[EB/OL]. 2018. http: //www.itrpv.net/Reports/Downloads/2017/.
[2] [2] MASSON G, KAIZUKA I, IEA PVPS. Trends 2016 in Photovoltaic Applications [EB/OL]. 2016. http: //www.iea-pvps.org/fileadmin/dam/public/report/national/Trends_2016_-_mr.pdf.
[3] [3] TOBAS I, DEL CAIZO C, ALONSO J. Crystalline silicon solar cells and modules [J]. John Wiley & Sons, 2011: 265-313.
[4] [4] COUDERC R, AMARA M, DEGOULANGE J, et al.. Encapsulant for glass-glass PV modules for minimum optical losses: gas or EVA [J]. Energy Procedia, 2017, 124: 470-477.
[5] [5] JIANG H, LU L, SUN K. Experimental investigation of the impact of airborne dust deposition on the performance of solar photovoltaic (PV) modules [J]. Atmospheric Environment, 2011, 45(25): 4299-4304.
[6] [6] VERMA L K, SAKHWA M, SON J, et al.. Self-cleaning and antireflective packaging glass for solar modules [J]. Renewable Energy, 2011, 36(9): 2489-2493.
[7] [7] MARUYAMA T, BANDAI J, OSAKO S. Reflection at transparent V-grooved surface[J]. Solar Energy Materials & Solar Cells, 2000, 64(3): 261-268.
[8] [8] RUBIN M. Optical-properties of soda lime silica glasses [J]. Solar Energy Materials, 1985, 12(4): 275-288.
[9] [9] GRUNOW P, SAUTER D, HOFFMANN V, et al.. The influence of textured surfaces of solar cells and modules on the energy rating of PV systems [C]. 20th EPVSEC, Barcelona, 2005.
[10] [10] WOHLGEMUTH J, CUNNINGHAM D, SHANER J, et al.. Crystalline silicon photovoltaic modules with anti-reflective coated glass [C]. IEEE Photovoltaic Specialists Conference, 2005: 1015-1018.
[11] [11] ESCARRE J, SDERSTRM K, DESPEISSE M, et al.. Geometric light trapping for high efficiency thin film silicon solar cells [J]. Solar Energy Materials and Solar Cells, 2012, 98: 185-190.
[12] [12] SON J, SAKHUJA M, DANNER A J, et al.. Large scale antireflective glass texturing using grid contacts in anodization methods [J]. Solar Energy Materials and Solar Cells, 2013, 116: 9-13.
[13] [13] LIU Y, LAI T, LI H, et al.. Nanostructure formation and passivation of large-area black silicon for solar cell applications [J]. Small, 2012, 8(9): 1392-1397.
[14] [14] VERMA L K, SAKHUJA M, SON J, et al.. Self-cleaning and antireflective packaging glass for solar modules [J]. Renewable Energy, 2011, 36(9): 2489-2493.
[15] [15] PARK K C, CHOIH J, CHANG C H, et al.. Nanotextured silica surfaces with robust superhydrophobicity and omnidirectional broadband supertransmissivity [J].ACS Nano, 2012, 6(5): 3789-3799.
[16] [16] BALLIF C, DICKER J, BORCHERT D, et al.. Solar glass with industrial porous SiO2 antireflection coating: measurements of photovoltaic module properties improvement and modelling of yearly energy yield gain [J]. Solar Energy Materials and Solar Cells, 2004, 82(3): 331-344.
[17] [17] PRADO R, BEOBIDE G, MARCAIDE A, et al.. Development of multifunctional sol-gel coatings: Anti-reflection coatings with enhanced self-cleaning capacity [J]. Solar Energy Materials and Solar Cells, 2010, 94(6): 1081-1088.
[18] [18] ABEN G, KOCKELKOREN T, LI Y. Light Transmittance Enhancement Over Lifetime Performance of Anti-reflective PV Module Cover Glass [R/OL].https: //www.dsm.com/content/dam/dsm/cworld/en_US/documents/light-transmittance-enhancement-over-lifetime-performance-of-anti-reflective-pv-module-cover-glass.pdf.
[19] [19] VOGT M R, HOLST H, SCHULTEHUXEL H, et al.. Optical constants of UV transparent EVA and the impact on the PV module output power under realistic irradiation [C]. Proceedings of the 6th International Conference on Crystalline Silicon Photovoltaics (Siliconpv 2016), 2016, 92: 523-530.
[20] [20] VOGT M R. Development of Physical Models for the Simulation of Optical Properties of Solar Cell Modules, 2015.
[21] [21] DUTTAGUPTA S, MA F, HOEX B, et al.. Optimised antireflection coatings using silicon nitride on textured silicon surfaces based on measurements and multidimensional modelling [C]. International Conference on Materials for Advanced Technologies 2011, Symposium O, 2012, 15(17): 78-83.
[22] [22] PALIK E D, PALIK E D. Handbook of optical constants of solids [J]. Academic Press, 1985: 189.
[23] [23] GREEN M A. Self-consistent optical parameters of intrinsic silicon at 300 K including temperature coefficients [J]. Solar Energy Materials & Solar Cells, 2008, 92(11): 1305-1310.
[24] [24] VOGT M R, HAHN H, HOLST H, et al.. Measurement of the optical constants of soda-lime glasses in dependence of iron content and modeling of iron-related power losses in crystalline Si solar cell modules [J]. IEEE Journal of Photovoltaics, 2016, 6(1): 111-118.
[25] [25] BLIESKE U, DOEGE T, GAYOUT P, et al.. Light-trapping in solar modules using extra-white textured glass [C]. Photovoltaic Energy Conversion, Proceedings of 3rd World Conference on., IEEE, 2003.
[26] [26] WANG M, MA P, YIN M, et al.. Scalable production of mechanically robust antireflection film for omnidirectional enhanced flexible thin film solar cells [J]. Advanced Science, 2017, 4(9): 1700079.
Get Citation
Copy Citation Text
GU Xue-hao, LU Lin-feng, YIN Min, TIAN Shu-quan, REN Wei, LI Gao-fei, YANG Li-you, LI Yong-le, LI Dong-dong. Enhanced photovoltaic panel performance by geometry design of cover glass[J]. Optics and Precision Engineering, 2019, 27(4): 756
Category:
Received: Oct. 24, 2018
Accepted: --
Published Online: Jul. 25, 2019
The Author Email: Xue-hao GU (guxh@sari.ac.cn)