Acta Optica Sinica, Volume. 44, Issue 5, 0515001(2024)

Dual-Energy CT Base Material Decomposition Method Based on Multi-Channel Cross-Convolution UCTransNet

Fan Wu1, Tong Jin1, Guorui Zhan1, Jingjing Xie1, Jin Liu1,2、*, and Yikun Zhang2,3
Author Affiliations
  • 1College of Computer and Information, Anhui Polytechnic University, Wuhu 241000, Anhui , China
  • 2Key Laboratory of Computer Network and Information Integration (Southeast University), Ministry of Education, Nanjing 210096, Jiangsu , China
  • 3Laboratory of Image Science and Technology, Southeast University, Nanjing 210096, Jiangsu , China
  • show less
    Figures & Tables(20)
    Architecture of MC-UCTransNet
    Flow chart of the generation of DECT image
    Decomposition results of different methods in the Group 1 test set, where the first row represents images of bone-based material, and the second row represents images of soft tissue-based material
    Decomposition results of different methods in Group 2 test set, where the first row represents images of bone-based material, and the second row represents images of soft tissue-based material
    PSNR values of bone-based materials and soft tissue-based materials decomposition results of different methods in four test sets. (a) Bone-based materials; (b) soft tissue-based materials
    MAE, MSE, and SSIM values of bone-based materials and soft tissue-based materials decomposition results of different methods in four test sets. Among them, M1, M2, M3, M4, M5, and M6 represent Matrix Inversion, Iterative Decomposition, FCN, Butterfly-net, DIWGAN, and MC-UCTransNet, respectively. (a) Bone-based materials; (b) soft tissue-based materials
    Low-energy reconstruction images of decomposition results obtained by different methods. (a) Reference low-energy images; (b) reconstructed images of FCN; (c) reconstructed images of Butterfly-net; (d) reconstructed images of DIWGAN; (e) reconstructed images of MC-UCTransNet
    Difference between reference low energy images and decomposition results obtained by different methods. (a) FCN; (b) Butterfly-net; (c) DIWGAN; (d) MC-UCTransNet
    Decomposition results of different methods in the Group 1 test set, where the first row represents images of iodine-based material, and the second row represents images of soft tissue-based material
    Decomposition results of different methods in the Group 2 test set, where the first row represents images of iodine-based material, and the second row represents images of soft tissue-based material
    PSNR and SSIM in the test set for the loss function under different combinations of hyperparameters
    Convergence of loss and PSNR on different networks in training and validation sets. (a) Loss; (b) PSNR
    • Table 1. Quantitative scores of bone-based material decomposition results with different methods unit: mean±variance

      View table

      Table 1. Quantitative scores of bone-based material decomposition results with different methods unit: mean±variance

      MethodMatrix InversionIterative DecompositionFCNButterfly-netDIWGANMC-UCTransNet
      MAE0.7676×10-2±4.13×10-80.7953×10-2±2.83×10-80.2218×10-2±2.40×10-80.1299×10-2±0.88×10-80.1022×10-2±0.65×10-80.0924×10-2±0.59×10-8
      MSE0.0479×10-2±2.26×10-90.0434×10-2±1.89×10-90.0366×10-2±1.66×10-90.0115×10-2±0.30×10-90.0108×10-2±0.22×10-90.0098×10-2±0.22×10-9
      PSNR32.6585±0.2133.0787±0.2033.8317±0.2438.8924±0.4739.1308±0.3539.5849±0.46
      SSIM0.9701±4.02×10-60.9851±0.88×10-60.9807±0.94×10-60.9926±0.77×10-60.9934±0.54×10-60.9939±0.65×10-6
    • Table 2. Quantitative scores of soft tissue-based material decomposition results with different methods unit: mean±variance

      View table

      Table 2. Quantitative scores of soft tissue-based material decomposition results with different methods unit: mean±variance

      MethodMatrix InversionIterative DecompositionFCNButterfly-netDIWGANMC-UCTransNet
      MAE2.7783×10-2±2.05×10-72.4921×10-2±2.30×10-70.5653×10-2±0.15×10-70.2742×10-2±0.06×10-70.2468×10-2±0.04×10-70.2650×10-2±0.04×10-7
      MSE0.2662×10-2±0.83×10-80.2719×10-2±1.03×10-80.0315×10-2±7.06×10-80.0116×10-2±0.008×10-80.0089×10-2±0.006×10-80.0062×10-2±0.003×10-8
      PSNR23.6462±0.0223.5547±0.0332.9346±0.1437.2569±0.1038.4406±0.1339.9546±0.13
      SSIM0.8589±1.41×10-50.9321±0.18×10-50.9574±0.13×10-50.9871±0.03×10-50.9888±0.03×10-50.9904±0.02×10-5
    • Table 3. Quantitative scores of iodine-based material decomposition results of different methods unit: mean±variance

      View table

      Table 3. Quantitative scores of iodine-based material decomposition results of different methods unit: mean±variance

      MethodMatrix InversionIterative DecompositionFCNButterfly-netDIWGANMC-UCTransNet
      MAE1.0684×10-2±73.29×10-81.0729×10-2±77.35×10-80.2807×10-2±3.22×10-80.1634×10-2±0.51×10-80.1157×10-2±0.95×10-80.1427×10-2±0.43×10-8
      MSE0.0613×10-2±3.26×10-90.0649×10-2±3.87×10-90.0322×10-2±1.04×10-90.0042×10-2±0.04×10-90.0052×10-2±0.06×10-90.0040×10-2±0.01×10-9
      PSNR31.6845±0.2531.4407±0.2634.4763±0.2543.3787±0.3442.3866±0.3343.5526±0.13
      SSIM0.9667±6.22×10-60.9793±4.38×10-60.9753±1.89×10-60.9948±0.10×10-60.9940±0.22×10-60.9947±0.14×10-6
    • Table 4. Quantitative scores of soft tissue-based material decomposition results with different methods unit: mean±variance

      View table

      Table 4. Quantitative scores of soft tissue-based material decomposition results with different methods unit: mean±variance

      MethodMatrix InversionIterative DecompositionFCNButterfly-netDIWGANMC-UCTransNet
      MAE2.3850×10-2±6.30×10-72.2024×10-2±5.85×10-70.6133×10-2±0.43×10-70.4009×10-2±0.17×10-70.3295×10-2±0.24×10-70.3466×10-2±0.16×10-7
      MSE0.2148×10-2±1.96×10-80.2202×10-2±1.98×10-80.0313×10-2±0.04×10-80.0115×10-2±0.08×10-80.0125×10-2±0.02×10-80.0112×10-2±0.03×10-8
      PSNR24.5465±0.0824.4386±0.0832.9122±0.0836.3110±0.5836.9219±0.2237.3843±0.37
      SSIM0.8732±2.19×10-50.9317±0.47×10-50.9539±0.23×10-50.9807±0.19×10-50.9814±0.11×10-50.9815±0.15×10-5
    • Table 5. Quantitative scores of decomposition results of bone-based material images under different models unit: mean±variance

      View table

      Table 5. Quantitative scores of decomposition results of bone-based material images under different models unit: mean±variance

      Model(w/o)Attention(w/o)SSIMMax-Min normalizationMC-UCTransNet
      MAE0.1271×10-2±1.09×10-80.1772×10-2±1.56×10-80.0933×10-2±0.65×10-80.0924×10-2±0.59×10-8
      MSE0.0129×10-2±3.09×10-100.0123×10-2±2.51×10-100.0085×10-2±1.55×10-100.0098×10-2±2.17×10-10
      PSNR /dB38.3890±0.3738.5899±0.3435.4132±0.5039.5849±0.46
      SSIM0.9912±9.33×10-70.9917±8.66×10-70.9932±8.35×10-70.9939±6.53×10-7
    • Table 6. Quantitative scores of decomposition results of soft tissue-based material image under different models unit: mean±variance

      View table

      Table 6. Quantitative scores of decomposition results of soft tissue-based material image under different models unit: mean±variance

      Model(w/o)Attention(w/o)SSIMMax-Min normalizationMC-UCTransNet
      MAE0.3258×10-2±0.13×10-70.4766×10-2±1.11×10-70.2369×10-2±0.07×10-70.2650×10-2±0.04×10-7
      MSE0.0159×10-2±3.10×10-100.0278×10-2±6.91×10-100.0069×10-2±0.41×10-100.0061×10-2±0.27×10-10
      PSNR /dB35.9114±0.2233.4747±0.1729.9182±0.1639.9546±0.13
      SSIM0.9832±0.91×10-60.9826±0.92×10-60.9859±2.02×10-60.9904±0.15×10-6
    • Table 7. Quantitative comparison of model decomposition results under different scale feature combinations

      View table

      Table 7. Quantitative comparison of model decomposition results under different scale feature combinations

      ModelBoneSoft tissue
      PSNR /dBSSIMPSNR /dBSSIM
      E1+E2+E3+E439.58490.993939.95460.9904
      E2+E3+E438.05090.992235.68490.9857
      E3+E439.43290.993438.86240.9892
      (w/o)Attention38.38900.991235.91140.9832
    • Table 8. Comparison of the complexity of different methods

      View table

      Table 8. Comparison of the complexity of different methods

      MethodNumber of parametersFLOP /109Train time /minTest time /s
      FCN494489224
      Butterfly-net3170210620
      DIWGAN19190512843
      MC-UCTransNet6735494110
    Tools

    Get Citation

    Copy Citation Text

    Fan Wu, Tong Jin, Guorui Zhan, Jingjing Xie, Jin Liu, Yikun Zhang. Dual-Energy CT Base Material Decomposition Method Based on Multi-Channel Cross-Convolution UCTransNet[J]. Acta Optica Sinica, 2024, 44(5): 0515001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Machine Vision

    Received: Oct. 31, 2023

    Accepted: Dec. 14, 2023

    Published Online: Mar. 19, 2024

    The Author Email: Liu Jin (liujin@ahpu.edu.cn)

    DOI:10.3788/AOS231715

    CSTR:32393.14.AOS231715

    Topics