Chinese Journal of Lasers, Volume. 49, Issue 14, 1402807(2022)

Long-Time Thermal Exposure Microstructures and Performance Evolution Law of Selective Laser Melting IN625 Nickel-Based Superalloy

Zhenfeng Song1, Shuang Gao1,2、*, Bo He1, Liang Lan1, Jiang Wang2, and Jieshan Hou3
Author Affiliations
  • 1Research Center of High-Temperature Alloy Precision Forming , School of Material Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
  • 2State Key Laboratory of Advanced Special Steel, Shanghai University, Shanghai 200444, China
  • 3Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, Liaoning, China
  • show less
    Figures & Tables(12)
    Schematic of SLM IN625 sample orientation and tensile sample size
    Phase diagrams of IN625 alloy calculated by thermodynamic software. (a) Equilibrium phase diagram; (b) partial enlargement of equilibrium phase diagram; (c) 700 ℃ isothermal transformation phase diagram
    SEM images and EDS analysis result of SLM IN625 alloy. (a) As-built microstructure; (b) solution-treated microstructure; (c) high magnification image of part indicated by white frame in Fig.3(a); (d) EDS analysis result
    OM images of thermal exposure microstructures of as-bulit and solution-treated SLM IN625 alloys
    SEM images of thermal exposure microstructures of as-bulit and solution-treated SLM IN625 alloys
    Relationship between average size of δ phase and thermal exposure holding time at 700 ℃
    Tensile properties of SLM IN625 alloy at room temperature. (a) Ultimate tensile strength; (b) yield strength;(c) elongation
    Microstructural evolution mechanism model of SLM IN625 nickel-base superalloy after long-term aging
    • Table 1. Chemical compositions of IN625 alloy (mass fraction, %)

      View table

      Table 1. Chemical compositions of IN625 alloy (mass fraction, %)

      ElementCuTaMgPSCaSiONB
      Content0.0200.010<0.010<0.010<0.010<0.0100.0600.0160.007<0.006
    • Table 2. Heat treatment regime

      View table

      Table 2. Heat treatment regime

      SampleSolution treatmentLong-term aging treatment
      AB 700 ℃/500 h, 1000 h, 3000 h/WC
      ST1200 ℃/1 h/WC700 ℃/500 h, 1000 h, 3000 h/WC
    • Table 3. EDS composition analysis of precipitated phase at grain boundary in thermal exposure microstructure

      View table

      Table 3. EDS composition analysis of precipitated phase at grain boundary in thermal exposure microstructure

      Spectrum No.ContentNiCrMoNbFeTiAlSi
      Spectrum 1Mass fraction /%59.2913.4411.7514.580.030.250.330.33
      Atomic fraction /%64.0116.387.769.950.030.330.790.76
      Spectrum 2Mass fraction /%54.0624.7613.946.270.090.580.290
      Atomic fraction /%56.3429.138.894.130.10.740.650
    • Table 4. Average size and coarse rate of δ phase of SLM IN625 alloy after long-term thermal exposure

      View table

      Table 4. Average size and coarse rate of δ phase of SLM IN625 alloy after long-term thermal exposure

      Sample No.Average size /μmCoarse rate /(μm3·h-1) 
      Aging time of 500 hAging time of 1000 hAging time of 3000 h
      ST 1.172.597.22×10-3
      AB0.851.331.882.34×10-3
    Tools

    Get Citation

    Copy Citation Text

    Zhenfeng Song, Shuang Gao, Bo He, Liang Lan, Jiang Wang, Jieshan Hou. Long-Time Thermal Exposure Microstructures and Performance Evolution Law of Selective Laser Melting IN625 Nickel-Based Superalloy[J]. Chinese Journal of Lasers, 2022, 49(14): 1402807

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Dec. 21, 2021

    Accepted: Feb. 11, 2022

    Published Online: Jun. 14, 2022

    The Author Email: Gao Shuang (gaoshuang_alloy@163.com)

    DOI:10.3788/CJL202249.1402807

    Topics