Journal of Infrared and Millimeter Waves, Volume. 42, Issue 6, 730(2023)
Bi composition-dependent study of infrared photoluminescence efficiency in InPBi bandgap
[1] Alberi K, Wu J, Walukiewicz W et al. Valence band anticrossing in mismatched III-V semiconductor alloys[J]. Phys. Rev. B, 75, 045203-045208(2007).
[2] Francoeur S, Seong M J, Mascarenhas A et al. Band gap of GaAs1-xBix, 0
[3] Rajpalke M K, Linhart W M, Yu K M et al. Bi flux-dependent MBE growth of GaSbBi alloys[J]. Journal of Crystal Growth, 425, 241-244(2015).
[4] Ma K Y, Fang Z M, Jaw D H et al. Organometallic vapor phase epitaxial growth and characterization of InAsBi and InAsSbBi[J]. Applied Physics Letters, 55, 2420-2422(1989).
[5] Kopaczek J, Kudrawiec R, Polak M P et al. Contactless electroreflectance and theoretical studies of band gap and spin-orbit splitting in InP1-xBix dilute bismide with x ≤ 0.034[J]. Appl. Phys. Lett., 105, 222104(2014).
[6] Wu X, Chen X, Pan W et al. Anomalous photoluminescence in InP1-xBix[J]. Scientific Reports, 6, 27867(2016).
[7] Wang K, Gu Y, H F. Zhou et al. InPBi Single Crystals Grown by Molecular Beam Epitaxy. Sci. Rep, 5449(2014).
[8] Bhowal M K, Das S, Sharma A S et al. Anomalous increase of sub-band gap photoluminescence from InPBi layers grown by liquid phase epitaxy[J]. Materials Research Express, 085902(2019).
[9] Gandouzi F. Hedhili F, Rekik N. A density functional theory investigation of the structural and optoelectronic properties of InP1-xBix alloys[J]. Computational Materials Science, 149, 307-315(2018).
[10] Wu L. Y., Lu P. F., Yang C. H. et al. The effect of BiIn hetero-antisite defects in In1–xPBix alloy[J]. Journal of Alloys & Compounds, 674, 21-25(2016).
[11] Shao J, Lu W, Lu X et al. Modulated photoluminescence spectroscopy with a step-scan Fourier transform infrared spectrometer[J]. Review of Scientific Instruments, 77, 063104(2006).
[12] Yan B, Chen X, Zhu L et al. Bismuth-induced band-tail states in GaAsBi probed by photoluminescence[J]. Applied Physics Letters, 114, 052104(2019).
[13] Dou C, Chen X, Chen Q et al. Photoluminescence Evolution with Deposition Thickness of Ge Nanostructures Embedded in GaSb[J]. Physica status solidi, B. Basic solid state physics, 259(2022).
[14] Chen X, Zhu L, Zhang Y et al. Modulated Photoluminescence Mapping of Long-Wavelength Infrared InAs/GaSb Type-II Superlattice: In-Plane Optoelectronic Uniformity[J]. Physical Review Applied, 15, 044007(2021).
[15] Chen X R, Wu X Y, Yue L et al. Negative Thermal Quenching of Below-bandgap Photoluminescence in InPBi[J]. Appl. Phys. Lett, 110, 051903(2017).
[16] Pan W, Wang P, Wu X et al. Growth and material properties of InPBi thin films using gas source molecular beam epitaxy[J]. Journal of Alloys and Compounds, 656, 777-783(2016).
[17] Shao J, Lu X, Yue F et al. Magnetophotoluminescence study of GaxIn1-xP quantum wells with CuPt-type long-range ordering[J]. Journal of Applied Physics, 100, 1399(2006).
[18] Shao J, Lu C, Wei L et al. Backside-illuminated infrared photoluminescence and photoreflectance: Probe of vertical nonuniformity of HgCdTe on GaAs[J]. Applied Physics Letters, 96, 091101(2010).
[19] Shao J, Lu W, Tsen G et al. Mechanisms of infrared photoluminescence in HgTe/HgCdTe superlattice[J]. Journal of Applied Physics, 112, 663(2012).
[20] Shao J, Qi Z, Zhao H et al. Photoluminescence probing of interface evolution with annealing in InGa(N)As/GaAs single quantum wells[J]. Journal of Applied Physics, 23, 165327(2015).
[21] Dreszer, Chen, Seendripu et al. Weber, Phosphorus antisite defects in low-temperature InP[J]. Physical Review. B, Condensed matter, 47, 4111-4114(1993).
[22] Gelczuk Łukasz, Stokowski H, Kopaczek J et al. Bi-induced acceptor level responsible for partial compensation of native free electron density in InP1-xBix dilute bismide alloys[J]. Journal of Physics D Applied Physics, 49, 115107(2016).
[23] Lu X, Beaton D A, Lewis R B et al. Composition dependence of photoluminescence of GaAs1-xBix alloys[J]. Applied Physics Letters, 95, 2245(2009).
[24] Chen X R, Alradhi H, Jin Z M et al. Mid-infrared Photoluminescence Revealing Internal Quantum Efficiency Enhancement of Type-I and Type-II InAs Core/shell Nanowires[J]. Optics Letters, 47, 5208-5211(2022).
[25] Chichibu S F, Uedono A, Onuma T. Origin of defect-insensitive emission probability in In-containing (Al,In,Ga)N alloy semiconductors[J]. Nature Materials, 5, 810-6(2006).
[26] Pillai M R, Kim S S, Ho S T et al. Growth of InxGa1-xAs/GaAs Heterostructures Using Bi as a Surfactant[J]. Journal of Vacuum Science & Technology B, 18, 1232-1236(2000).
Get Citation
Copy Citation Text
Zi-Li YANG, Man WANG, Deng-Guang YU, Liang-Qing ZHU, Jun SHAO, Xi-Ren CHEN. Bi composition-dependent study of infrared photoluminescence efficiency in InPBi bandgap[J]. Journal of Infrared and Millimeter Waves, 2023, 42(6): 730
Category: Research Articles
Received: Mar. 21, 2023
Accepted: --
Published Online: Dec. 26, 2023
The Author Email: Deng-Guang YU (ydg017@usst.edu.cn), Xi-Ren CHEN (xrchen@mail.sitp.ac.cn)