Chinese Journal of Lasers, Volume. 31, Issue 4, 417(2004)
Application of the Scalar PML-FDTD Method for Simulation of Weakly Guiding Optical Devices
[1] [1] J. Van Roey, J. Van der Donk, P. E. Lagasse. Beam propagation method: analysis and assessment[J]. J. Opt. Soc. Am., 1981, 71(7): 803~810
[2] [2] W. Huang, Chenglin Xu, Sai-Tak Chu et al.. The finite-difference vector beam propagation method: analysis and assessment [J]. J. Lightwave Technol., 1992, 10(3):295~305
[3] [3] S.-T. Chu, S. K. Chaudhuri. A finite-difference time-domain method for the design and analysis of guided-wave optical structures [J]. J. Lightwave Technol., 1989, 7(12):2033~2038
[4] [4] W. P. Huang, S. T. Chu, A. Goss et al.. A scalar finite-difference time-domain approach to guided-wave optics [J]. IEEE Photon. Technol. Lett., 1991, 3(6):524~526
[5] [5] Jean-Pierre Berenger. A perfectly match layer for the absorption of electromagnetic waves [J]. Journal of Computational Physics, 1994, 114:185~200
[6] [6] G. Mur. Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic-field equations [J]. IEEE Trans. EMC, 1981, 23(4):377~382
[7] [7] M. A. Alsunaidi, W. Elsallal. A PML-FDTD formulation for the simulation of optical structures [J]. Microw. Opt. Technol. Lett., 1999, 22(5):355~358
[8] [8] K. Jung, H. Kim. An efficient formulation of a 1-D model PML for waveguide structures [J]. Microw. Opt. Technol. Lett., 1999, 21(1):48~51
[9] [9] O. Ramadan, A. Y. Oztoprak. An efficient implementation of the PML for truncating FDTD domains [J]. Microw. Opt. Technol. Lett., 2003, 36(1):55~60
[10] [10] D. Zhou, W. P. Huang, C. L. Xu et al.. The perfectly matched layer boundary condition for scalar finite-difference time-domain method [J]. IEEE Photon. Technol. Lett., 2001, 13(5):454~456
Get Citation
Copy Citation Text
[in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Application of the Scalar PML-FDTD Method for Simulation of Weakly Guiding Optical Devices[J]. Chinese Journal of Lasers, 2004, 31(4): 417