OPTICS & OPTOELECTRONIC TECHNOLOGY, Volume. 21, Issue 5, 1(2023)
Computer-Generated Moiré Profilometry and its Development Trends
[1] [1] Gorthi S S, Rastogi P. Fringe projection techniques: whither we are?[J]. Optics and Lasers in engineering, 2010, 48(2): 133-140.
[2] [2] An Y, Zhang S. High-resolution, real-time simultaneous 3D surface geometry and temperature measurement[J]. Optics Express, 2016, 24(13): 14552-14563.
[3] [3] Zhang H H, Zhang Q C, Li Y, et al. High speed 3D shape measurement with temporal Fourier transform profilometry[J]. Applied Sciences, 2019, 9 (19): 4123.
[4] [4] Sansoni G, Docchio F. Three-dimensional optical measurements and reverse engineering for automotive applications[J]. Robot and Computer-Integrated Manufacturing, 2004, 20(5): 359-367.
[5] [5] Zhong K, Li Z, Zhou X, et al. Enhanced phase measurement profilometry for industrial 3D inspection automation[J]. International Journal of Advanced Manufacturing Technology, 2015, 76(9-12): 1563-1574.
[6] [6] Wei B, Liang J, Li J, et al. Rapid three-dimensional chromoscan system of body surface based on digital fringe projection[C]. SPIE, 2015, 9576, 95760P.
[7] [7] Heike C L, Upson K, Stuhaug E, et al. 3D digital stereophotogrammetry: a practical guide to facial image acquisition[J]. Head Face Med. , 2010, 6(1): 18.
[8] [8] Cao C, Weng Y, Zhou S, et al. FaceWarehouse: A 3D facial expression database for visual computing[J]. IEEE Trans. Vis. Comput. Graph., 2014, 20(3): 413- 425.
[9] [9] Zhang S. Recent progresses on real-time 3D shape measurement using digital fringe projection techniques[J]. Opt. Lasers Eng., 2010, 48(2): 149-158.
[10] [10] Feng S J, Zuo C, Hu Y, et al. Deep-learning based fringe- pattern analysis with uncertainty estimation[J]. Optica, 2021, 8(12): 1507-1510.
[11] [11] Guo W B, Wu Z J, Xu R C, et al. A fast reconstruction method for three dimensional shape measurement using dual-frequency grating projection and phase-to-height lookup table[J]. Opt. Laser Technol., 2019, 112: 269-277.
[14] [14] Takeda M, Ina H, Kobayashi S. Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry[J]. J. Opt. Soc. Amer., 1981, 72(1): 156-160.
[15] [15] Srinivasan V, Liu H C, Halioua M. Automated phase-measuring profilometry of 3D diffuse objects[J]. Appl. Opt., 1984, 23(18): 3105-3108.
[16] [16] Lu M T, Su X Y, Cao Y P, et al. 3D shape reconstruction algorithms for modulation measuring profilometry with synchronous scanning[J]. Chinese Lasers, 2016, 43(3): 0308006.
[17] [17] Takasaki H, Moiré Topography. Generation of surface contours by Moire pattern[J]. Applied Optics, 1970, 9(6):1467-1472.
[18] [18] Guo L, Su X, Li J. Improved fourier transform profilometry for the automatic measurement of 3D object shapes[J]. Opt. Eng., 1990, 29(12): 1439-44.
[19] [19] Liu X R, Jonathan K. Real-time 3D surface-shape measurement using background-modulated modified Fourier transform profilometry with geometry-constraint[J]. Optics and Lasers in Engineering, 2019, 115: 217-224.
[20] [20] Guo H, Huang PS. 3-D shape measurement by use of a modified fourier transform method[C]. SPIE, 2008, 7066.
[21] [21] Qian K M. Applications of windowed Fourier fringe analysis in optical measurement: A review[J]. Optics and Lasers in Engineering, 2015, 66: 67-73.
[22] [22] Zhang Z H, Guo H W. Fringe phase extraction using windowed Fourier transform guided by principal component analysis[J]. Applied Optics, 2013, 52(27): 6804-6812.
[23] [23] Zhang Z H, Jing Z, Wang Z H, et al. Comparison of Fourier transform, windowed Fourier transform, and wavelet transform methods for phase calculation at discontinuities in fringe projection profilometry[J]. Optics and Lasers in Engineering, 2012, 50(8): 1152-1160.
[24] [24] Wu Haitao, Cao Yiping, An Haihua, et al. A novel phase-shifting profilometry to realize temporal phase unwrapping simultaneously with the least fringe patterns[J]. Optics and Lasers in Engineering, 2022, 153: 107004.
[25] [25] Song J W, Lau D L, Ho Y S, et al. Automatic look-up table based real-time phase unwrapping for phase measuring profilometry and optimal reference frequency selection[J]. Optics Express, 2019, 27(9): 13357-13371.
[26] [26] Zuo C, Chen Q, Gu G H, et al. High-speed three-dimensional shape measurement for dynamic scenes using bi-frequency tripolar pulse-width-modulation fringe projection[J]. Optics and Lasers in Engineering, 2013, 51(8): 953-960.
[27] [27] Feng S J, Zuo C, Tao T Y, et al. Robust dynamic 3-D measurements with motion-compensated phase-shifting profilometry[J]. Opt. Laser Eng., 2018, 103: 127-138.
[28] [28] Wang Y, Liu Z, Jiang C, et al. Motion induced phase error reduction using a Hilbert transform[J]. Opt. Express, 2018, 26(26): 34224-34235.
[31] [31] Zhai A P, Cao Y P, Huang Z F, et al. A novel composite -structure-light 3D measurement method for improving accuracy based on two plus one phase shifting algorithm[J]. Optik(Stuttgart), 2013, 124(5): 461-465.
[32] [32] Zhang S, Yau S T. High-speed three-dimensional shape measurement system using a modified two-plus-one phase-shifting algorithm[J]. Optical Engineering, 2007, 46(11).
[33] [33] Li H M, Cao Y P, Wang Y P, et al. Composite-structured-light profilometry using greyscale expansion[J]. Optik (Stuttgart), 2020, 212: 164711.
[34] [34] An H H, Cao Y P, Li H M, et al. An accuracy improving method for composite grating phase measuring profilometry[J]. Optics Communications, 2020, 477: 126343.
[35] [35] An H H, Cao Y P, Li H M, et al. A composite grating phase-measuring profilometry based on mixed filtering window[J]. Chinese Lasers, 2020, 47(6): 0604007.
[36] [36] He D W, Cao Y P. Real-time Phase Measuring Profilometry based on RGB Tricolor[J]. Tool Engineering, 2015, 49 (5): 89-93.
[37] [37] Wang J H, Yang Y X. Double N-step phase-shifting profilometry using color-encoded grating projection[J]. Chinese Optics, 2019, 12(3): 616-627.
[38] [38] Zhong M, Su X Y, Chen W J, et al. Modulation measuring profilometry with auto-synchronous phase shifting and vertical scanning[J]. Optics Express, 2014, 22(26): 31620-31634.
[39] [39] Takasaki H. Moiré topography from its birth to practical application[J]. Opt. Laser Eng., 1982: 1662-1668.
[40] [40] Mishra D, Blotter J D. Comparison of reference image generation techniques for projection moire interferometry[J]. Applied Optics, 2001, 40(31): 5624-5631.
[41] [41] Wegdam A M F, Podzimek O, Zijlstra S. Projection moire fring pattern prediction using the optical transfer-function[J]. Applied Optics, 1991, 30(13): 1673-1677.
[42] [42] Tang Y, Chen J B. Design considerations for rotation scanning projection moire topography[J]. Measurement Science and Technology, 2020, 31(4): 45018.
[43] [43] Su D, Zhu Y M. Scanning moire fringe imaging by scanning transmission electron microscopy[J]. Ultramicroscopy, 2010, 110(3): 229-233.
[44] [44] Mohammadi F, Kofman J. Improved grid-noise removal in single-frame digital moire 3D shape measurement[J]. Optics and Lasers in Engineering, 2016, 86: 143-155.
[45] [45] Li C M, Cao Y P, Chen C, et al. Computer-generated Moire profilometry[J]. Optics Express, 2017, 25(22): 26815-26824.
[46] [46] Li C M, Cao Y P, Wang L, et al. Real-time computer-generated moiré profilometry with adaptive filtering algorithm[J]. Optical Engineering, 2020, 59(3).
[47] [47] Li C M, Cao Y P, Wang L, et al. High precision computer-generated moiré profilometry[J]. Scientific Reports, 2019, 9: 7804.
[48] [48] Li C M, Cao Y P, Wang L, et al. Computer-generated moiré profilometry based on fringe-superposition[J]. Scientific Reports, 2020, 20: 17202.
[49] [49] Li C M, Cao Y P, Wan Y Y, et al. Computer-generated frequency-carrier moiré profilometry[J]. Optics Communications, 2021, 501: 127381.
[50] [50] Wang L, Cao Y P, Li C M, et al. Orthogonal modulated computer-generated moiré profilometry[J]. Optic Communications, 2020, 455: 124565.
[51] [51] Guan C, Hassebrook L, Lau D. Composite structured light pattern for three-dimensional video[J]. Opt. Express, 2003, 11 (5): 406-417.
[52] [52] Yue H M, Su X Y, Liu Y Z. Fourier transform profilometry based on composite structured light pattern[J]. Optics and Laser Technology, 2007, 39(6): 1170-1175.
[53] [53] Wu Y C, Cao Y P, Huang Z F, et al. Improved composite Fourier transform profilometry[J]. Optics and Laser Technology, 2012, 44(7): 2037-2042.
[54] [54] Peng K, Cao Y P, Wu Y C, et al. A new method using orthogonal two-frequency grating in online 3D[J]. Measurement, 2016, 83: 81-88.
[55] [55] Wang L, Cao Y P, Li C M, et al. Improved computer-generated moiré profilometry with flat image calibration[J]. Applied Optics, 2021, 60(5): 1209-1261.
[56] [56] Wang L, Cao Y P, Li C M, et al. Computer-generated moiré profilometry based on flat image demodulation[J]. Optical Review, 2021, 28(5): 546-556.
[57] [57] Wang Z Y, Nguyen D A, Barnes J C. Some practical considerations in fringe projection profilometry[J]. Opt. Laser Eng., 2010, 48(2): 218-225.
[58] [58] Kong X L, Jin Y, Wang Z B. DSP implementation of nonlinearity correction method for optical grating fringe image processing[J]. Zhongguo Ceshi / China Measurement & Test, 2015, 41(4): 66-69.
[59] [59] Liu K, Wang Y C, Lau D L, et al. Gamma model and its analysis for phase measuring profilometry[J]. Jounal of the Optical Society of America a-Optics Image. Science and Vision, 2010, 27(3): 553-562.
[60] [60] Qiao N, Quan C. Dual-frequency fringe projection for 3D shape measurement based on correction of gamma nonlinearity[J]. Optics and Laser Technology, 2018, 106: 378-384.
[61] [61] Li H M, Cao Y P, Wan Y Y, et al. A super-grayscale and real-time computer-generated Moire profilometry using video grating projection[J]. Scientific Reports, 2021, 11(1): 1-11.
[62] [62] Li J L, Hassebrook L G, Guan C. Optimized two-frequency phase-measuring-profilometry light-sensor temporal-noise sensitivity[J]. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 2003, 20 (1): 106-115.
[63] [63] Dai M L, Yang F J, Liu C, et al. A dual-frequency fringe projection three-dimensional shape measurement system using a DLP 3D projector[J]. Optics Communications, 2017, 382: 294-301.
[64] [64] Manuel S, Moises P, Guillermo G. Super sensitive two-wavelength fringe projection profilometry with 2-sensitivities temporal unwrapping[J]. Opt. Laser Eng., 2018, 106: 68-74.
[65] [65] Wang Y J, Yang S, Gou X Y. Modified Fourier transform method for 3D profile measurement without phase unwrapping[J]. Optics Letters, 2010, 35(5): 790-792.
[66] [66] Su W H. Color-encoded fringe projection for 3D shape measurements[J]. Optics Express, 2007, 15(20): 13167-13181.
[67] [67] Cheng T, Du Q Y, Jiang Y X. Color fringe projection profilometry using geometric constraints[J]. Optics Communications., 2017, 398: 39-43.
[68] [68] Wan Y Y, Cao Y P, Chen C, et al. Three-dimensional shape measurement for thin objects based on hue-height mapping using color-encoded fringe projection[J]. Transactions of the Institute of Measurement and Control., 2018, 40(14): 3978-3984.
[69] [69] Zhang H C, Cao Y P, Li C M, et al. Color-encoded single-shot computer-generated Moire Profilometry[J]. Scientific Reports, 2021, 11(1): 11020.
[70] [70] Zhang H C, Cao Y P, Li C M, et al. Color-coded computer- generated Moire profilometry with real -time 3D measurement and synchronous monitoring video collection[J]. Opt. Eng., 2021, 60(3): 034109.
[71] [71] Li H M, Cao Y P, Wu H T, et al. A dual-frequency temporal-geometric phase unwrapping based on computer-generated frequency-carrier Moiré profilometry[J]. Measurement, 2022, 200.
[72] [72] An Y T, Hyun J S, Zhang S. Pixel-wise absolute phase unwrapping using geometric constraints of structured light system[J]. Optics Express, 2016, 24(16): 18445-18459.
[73] [73] Zuo C, Huang L, Zhang M L, et al. Temporal phase unwrapping algorithms for fringe projection profilometry:A comparative review[J]. Optics and Lasers in Engineering, 2016, 85(C): 84-103.
[74] [74] Xing Y, Quan C, Tay C J. A generalized multi-sensitivity temporal phase unwrapping method for absolute phase retrieval[J]. Optics and Laser Technology, 2017, 96: 290-298.
[75] [75] Zhang S. Phase unwrapping error reduction framework for a multiple- wavelength phase- shifting algorithm[J]. Opt. Eng, 2009, 48(10): 105601.
[76] [76] Liu K, Wang Y C, Lau D L, et al. Dual-frequency pattern scheme for high- speed 3-D shape measurement[J]. Opt. Exp. , 2010, 18(5): 5229-5244.
[77] [77] Wan Y Y, Cao Y P, Kofman J. High-accuracy 3D surface measurement using hybrid multi-frequency composite-pattern temporal phase unwrapping[J]. Optics Express, 2020, 28(26): 39165-39180.
[78] [78] Zuo C, Chen Q, Gu G H, et al. High-speed three-dimensional profilometry for multiple objects with complex shapes[J]. Optics Express, 2012, 20(17): 19493-19510.
[79] [79] Wu H T, Cao Y P, An H H, et al. A novel phase-shifting profilometry to realize temporal phase unwrapping simultaneously with the least fringe patterns[J]. Optics and Lasers in Engineering, 2022, 153: 107004.
[80] [80] N Yang, Y P Cao, H H An, et al. Single-shot N-step phase measurement profilometry[J]. Optical Engineering, 2022, 61(4): 044105(1-15).
Get Citation
Copy Citation Text
CAO Yi-ping, ZHANG He-chen. Computer-Generated Moiré Profilometry and its Development Trends[J]. OPTICS & OPTOELECTRONIC TECHNOLOGY, 2023, 21(5): 1
Category:
Received: Jun. 20, 2023
Accepted: --
Published Online: Dec. 29, 2023
The Author Email:
CSTR:32186.14.