Chinese Journal of Lasers, Volume. 42, Issue s1, 102004(2015)
Research on Fiber Laser Performance Working at Different Temperatures
[1] [1] Yan Ping, Xiao Qirong, Fu Cheng, et al.. 1.6kW ytterbium doped all-fiber laser [J]. Chinese J Lasers, 2012, 39(4): 0416001.
[2] [2] Lou Qihong, He Bing, Xue Yuhao, et al.. 1.75-kilowatt continuous-wave output fiber laser using homemade ytterbium-doped large-code fiber [J]. Chinese J Lasers, 2009, 36(5): 1277.
[3] [3] Liu Zejin, Leng Jinyong, Guo Shaofeng, et al.. All fiber 2kW near-single-mode fiber laser [J] . Chinese J Lasers, 2013, 40(9): 0908003.
[4] [4] Zhao Hong, Zhou Shouhuan, Zhu Chen, et al.. High power fiber laser with output power more than 1.2kW [J]. Lasers & Infrared, 2006, 36(10): 1359.
[5] [5] D J Richardson, J Nilsson, W A Clarkson. High power fiber lasers: current status and future perspectives [J]. J Opt Soc Am B, 2010. 27(11): B63-B92.
[6] [6] Duan Kailiang, Zhao Baoyin, Zhao Wei, et al.. All fiber 1000W fiber laser [J]. Chinese J Lasers, 2009, 36(12): 3219.
[7] [7] Li Wei, Wu Zichun, Chen Xi, et al.. High power fiber laser with output power breaking through 1kW [J]. High Power Laser and Particle Beams, 2006, 18(6): 890.
[9] [9] Chen Shuang, Feng Ying. Temperature distribution in high power photonic crystal fiber laser [J]. Acta Photonica Sinica, 2008, 37(06): 1134-1138.
[11] [11] Hecht J. Understanding fiber optics (fourth edition)[M]. Columbus: Prentice Hall, 2002.
[12] [12] Yong Zhao, Yanbiao Liao. Discrimination methods and demodulation techniques for fiber Bragg grating sensors[J]. Optics and Lasers in Engineering. 2004, 41(1): 1-18.
[14] [14] Maxim Bolshtyansky, Paul Wysocki, Nicholas Conti. Model of temperature dependence for gain shape of erbium-doped fiber amplifie[J]. Journal of Lightwave Technology. 2000, 18(11): 1533-1540.
[15] [15] D A Grukh, A S Kurkov, V M Paramonov, et al.. Effect of heating on the optical properties of Yb3+-doped fibres and fibre lasers[J]. Quantum Electronics. 2004, 34(6): 579-582.
[16] [16] M Bell, N Kaurova, A Divochiy. On the nature of resistive transition in disordered superconducting nanowire[J]. IEEE Transactions on Applied Super Conductivity. 2007, 17(2): 267-271.
[17] [17] M Gong, Y Yuan, C Li, et al.. Numerical modeling of transverse mode competition in strongly pumped multimode fiber lasers and amplifiers[J]. Optics Express, 2007, 15(6): 3236-3246.
[18] [18] I Kelson, A Hardy. Optimization of strongly pumped fiber lasers[J]. Journal of Lightwave Technology, 1999, 17(5): 891-897.
[19] [19] Yong W, Hong P. Dynamic characteristics of double-clad fiber amplifiers for high-power pulse amplification[J]. Journal of Lightwave Technology, 2003, 21(10): 2262-2270.
[20] [20] Kelson I, Hardy A. Strongly pumped fiber lasers[J]. IEEE Journal of Quantum Electronics, 1998, 34(9): 1570-1577.
[21] [21] R T Schermer, J H Cole. Improved bend loss formula verified for optical fiber by simulation and experiment[J]. IEEE Journal of Quantum Electronics, 2007, 43(10): 899-909.
[22] [22] O G Okhotnikov. Fiber lasers[M]. Germany: Wiley-VCH, 2012.
Get Citation
Copy Citation Text
Du Xueyuan, Su Rongtao, Wang Xiaolin, Zhou Pu. Research on Fiber Laser Performance Working at Different Temperatures[J]. Chinese Journal of Lasers, 2015, 42(s1): 102004
Category: Laser physics
Received: Jan. 10, 2015
Accepted: --
Published Online: Sep. 14, 2015
The Author Email: Xueyuan Du (duxueyuan203@163.com)