Journal of the Chinese Ceramic Society, Volume. 53, Issue 5, 1269(2025)
Advanced Progress in Molecular Dynamics Simulations of Buffer/Backfill Materials for Deep Geological Repository
[4] [4] LI Y C, WEI S J, XU N, et al. Internal forces within the layered structure of Na-montmorillonite hydrates: Molecular dynamics simulation[J]. J Phys Chem C, 2020, 124(46): 25557-25567.
[5] [5] CHEN Y G, DONG X X, ZHANG X D, et al. Cyclic thermal and saline effects on the swelling pressure of densely compacted Gaomiaozi bentonite[J]. Eng Geol, 2019, 255: 37-47.
[6] [6] MANGELSDORF C S, WHITE L R. Effects of stern-layer conductance on electrokinetic transport properties of colloidal particles[J]. J Chem Soc, Faraday Trans, 1990, 86(16): 2859-2870.
[7] [7] WANG Q, TANG A M, CUI Y J, et al. Investigation of the hydro-mechanical behaviour of compacted bentonite/sand mixture based on the BExM model[J]. Comput Geotech, 2013, 54: 46-52.
[8] [8] CHANG F R C, SKIPPER N T, SPOSITO G. Computer simulation of interlayer molecular structure in sodium montmorillonite hydrates[J]. Langmuir, 1995, 11(7): 2734-2741.
[9] [9] AKINWUNMI B, HIRVI J T, KASA S, et al. Swelling pressure of Na- and Ca-montmorillonites in saline environments: A molecular dynamics study[J]. Chem Phys, 2020, 528: 110511.
[10] [10] KERISIT S, LIU C X. Molecular dynamics simulations of uranyl and uranyl carbonate adsorption at aluminosilicate surfaces[J]. Environ Sci Technol, 2014, 48(7): 3899-3907.
[11] [11] THAPA K B, KATTI K S, KATTI D R. Influence of the fluid polarity on shear strength of sodium montmorillonite clay: A steered molecular dynamics study[J]. Comput Geotech, 2023, 158: 105398.
[12] [12] ALDER B J, WAINWRIGHT T E. Studies in molecular dynamics. I. general method[J]. J Chem Phys, 1959, 31(2): 459-466.
[13] [13] SUN L L, HIRVI J T, SCHATZ T, et al. Estimation of montmorillonite swelling pressure: A molecular dynamics approach[J]. J Phys Chem C, 2015, 119(34): 19863-19868.
[14] [14] CYGAN R T, LIANG J J, KALINICHEV A G. Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field[J]. J Phys Chem B, 2004, 108(4): 1255-1266.
[15] [15] CYGAN R T, GREATHOUSE J A, KALINICHEV A G. Advances in clayff molecular simulation of layered and nanoporous materials and their aqueous interfaces[J]. J Phys Chem C, 2021, 125(32): 17573-17589.
[16] [16] TESSON S, LOUISFREMA W, SALANNE M, et al. Classical polarizable force field to study hydrated charged clays and zeolites[J]. J Phys Chem C, 2018, 122(43): 24690-24704.
[17] [17] KROUTIL O, CHVAL Z, SKELTON A A, et al. Computer simulations of quartz (101)-water interface over a range of pH values[J]. J Phys Chem C, 2015, 119(17): 9274-9286.
[18] [18] GOURNIS D, LAPPAS A, KARAKASSIDES M A, et al. A neutron diffraction study of alkali cation migration in montmorillonites[J]. Phys Chem Miner, 2008, 35(1): 49-58.
[19] [19] VIANI A, GUALTIERI A F, ARTIOLI G. The nature of disorder in montmorillonite by simulation of X-ray powder patterns[J]. Am Mineral, 2002, 87(7): 966-975.
[20] [20] BICKMORE B R, ROSSO K M, NAGY K L, et al. Ab initio determination of edge surface structures for dioctahedral 2:1 phyllosilicates: Implications for acid-base reactivity[J]. Clays Clay Miner, 2003, 51(4): 359-371.
[21] [21] LAIRD D A. Model for crystalline swelling of 2:1 phyllosilicates[J]. Clays Clay Miner, 1996, 44(4): 553-559.
[22] [22] PRADHAN S M, KATTI K S, KATTI D R. Evolution of molecular interactions in the interlayer of Na-montmorillonite swelling clay with increasing hydration[J]. Int J Geomech, 2015, 15(5): 04014073.
[23] [23] DAI W J, CHEN Y G, LI Y C, et al. A macroscopic model for predicating stepwise crystalline swelling of montmorillonite[J]. Comput Geotech, 2024, 171: 106350.
[25] [25] SWAI R E. A review of molecular dynamics simulations in the designing of effective shale inhibitors: Application for drilling with water-based drillingfluids[J]. J Petrol Explor Prod Technol, 2020, 10(8): 3515-3532.
[26] [26] KATTI D R, SRINIVASAMURTHY L, KATTI K S. Molecular modeling of initiation of interlayer swelling in Na-montmorillonite expansive clay[J]. Can Geotech J, 2015, 52(9): 1385-1395.
[27] [27] SUTER J L, ANDERSON R L, CHRISTOPHER GREENWELL H, et al. Recent advances in large-scale atomistic and coarse-grained molecular dynamics simulation of clay minerals[J]. J Mater Chem, 2009, 19(17): 2482-2493.
[28] [28] AMARASINGHE P M, KATTI K S, KATTI D R. Nature of organic fluid-montmorillonite interactions: An FTIR spectroscopic study[J]. J Colloid Interface Sci, 2009, 337(1): 97-105.
[29] [29] AMARASINGHE P M, KATTI K S, KATTI D R. Insight into role of clay-fluid molecular interactions on permeability and consolidation behavior of Na-montmorillonite swelling clay[J]. J Geotech Geoenviron Eng, 2012, 138(2): 138-146.
[30] [30] YANG Y F, QIAO R, WANG Y F, et al. Swelling pressure of montmorillonite with multiple water layers at elevated temperatures and water pressures: A molecular dynamics study[J]. Appl Clay Sci, 2021, 201: 105924.
[31] [31] ZHANG S Q, PEI H F. Determining the bound water content of montmorillonite from molecular simulations[J]. Eng Geol, 2021, 294: 106353.
[32] [32] SKIPPER N T, REFSON K, MCCONNELL J D C. Computer simulation of interlayer water in 2:1 clays[J]. J Chem Phys, 1991, 94(11): 7434-7445.
[33] [33] SCHMIDT S R, KATTI D R, GHOSH P, et al. Evolution of mechanical response of sodium montmorillonite interlayer with increasing hydration by molecular dynamics[J]. Langmuir, 2005, 21(17): 8069-8076.
[34] [34] KARABORNI S, SMIT B, HEIDUG W, et al. The swelling of clays: Molecular simulations of the hydration of montmorillonite[J]. Science, 1996, 271(5252): 1102-1104.
[35] [35] ZHANG C, LU N. What is the range of soil water density? critical reviews with a unified model[J]. Rev Geophys, 2018, 56(3): 532-562.
[36] [36] FUMAGALLI L, ESFANDIAR A, FABREGAS R, et al. Anomalously low dielectric constant of confined water[J]. Science, 2018, 360(6395): 1339-1342.
[37] [37] ZHU H, GHOUFI A, SZYMCZYK A, et al. Anomalous dielectric behavior of nanoconfined electrolytic solutions[J]. Phys Rev Lett, 2012, 109(10): 107801.
[39] [39] LIU X Y, WANG L H, ZHENG Z, et al. Molecular dynamics simulation of the diffusion of uranium species in clay pores[J]. J Hazard Mater, 2013, 244-245: 21-28.
[40] [40] MALIKOVA N, MARRY V, DUFRCHE J F, et al. Na/Cs montmorillonite: Temperature activation of diffusion by simulation[J]. Curr Opin Colloid Interface Sci, 2004, 9(1/2): 124-127.
[41] [41] RUTKAI G, KRISTF T. Molecular simulation study of intercalation of small molecules in kaolinite[J]. Chem Phys Lett, 2008, 462(4-6): 269-274.
[42] [42] MALIKOVA N, MARRY V, DUFRCHE J F, et al. Temperature effect in a montmorillonite clay at low hydration—Microscopic simulation[J]. Mol Phys, 2004, 102(18): 1965-1977.
[44] [44] HAN Z F, CUI Y, MENG Q, et al. The effect of inorganic salt on the mechanical properties of montmorillonite and its mechanism: A molecular dynamics study[J]. Chem Phys Lett, 2021, 781: 138982.
[47] [47] SUN L L, TANSKANEN J T, HIRVI J T, et al. Molecular dynamics study of montmorillonite crystalline swelling: Roles of interlayer cation species and water content[J]. Chem Phys, 2015, 455: 23-31.
[48] [48] DU J P, ZHOU A N, SHEN S L, et al. Revealing crucial effects of temperature and salinization on swelling behavior of montmorillonite[J]. Chem Eng J, 2022, 429: 132263.
[49] [49] DAI W J, CHEN Y G, YE W M, et al. Thermal and saline effects on the swelling deformation of montmorillonite: A molecular dynamics study[J]. Bull Eng Geol Environ, 2023, 83(1): 11.
[51] [51] CARRIER B, VANDAMME M, PELLENQ R J M, et al. Elastic properties of swelling clay particles at finite temperature upon hydration[J]. J Phys Chem C, 2014, 118(17): 8933-8943.
[52] [52] HAN Z F, YANG H, BU M H, et al. A molecular dynamics study on the structural and mechanical properties of pyrophyllite and M-Montmorillonites (M=Na, K, Ca, and Ba)[J]. Chem Phys Lett, 2022, 803: 139848.
[53] [53] ZHENG Y, ZAOUI A. Mechanical behavior in hydrated Na-montmorillonite clay[J]. Phys A Stat Mech Appl, 2018, 505: 582-590.
[54] [54] DU J P, ZHOU A N, LIN X S, et al. Modeling microstructural mechanical behavior of expansive soil at various water contents and dry densities by molecular dynamics simulation[J]. Comput Geotech, 2023, 158: 105371.
[55] [55] CHEN Y G, LI Z Y, YE W M, et al. Swelling characteristics of montmorillonite mineral particles in Gaomiaozi bentonite[J]. Constr Build Mater, 2024, 439: 137335.
[56] [56] BATHIJA A P, LIANG H Y, LU N, et al. Stressed swelling clay[J]. Geophysics, 2009, 74(4): A47-A52.
[58] [58] YANG W, ZAOUI A. Behind adhesion of uranyl onto montmorillonite surface: A molecular dynamics study[J]. J Hazard Mater, 2013, 261: 224-234.
[59] [59] DRUCHOK, HOLOVKO. Temperature and pH driven association in uranyl aqueous solutions[J]. Condens Matter Phys, 2012, 15(4): 43602.
[60] [60] JIANG X Q, NIE J N, BIAN L, et al. Competitive adsorption of uranyl and toxic trace metal ions at MFe2O4-montmorillonite (M = Mn, Fe, Zn, co, or Ni) interfaces[J]. Clays Clay Miner, 2019, 67(4): 291-305.
[61] [61] ZHANG C, LIU X D, TINNACHER R M, et al. Mechanistic understanding of uranyl ion complexation on montmorillonite edges: A combined first-principles molecular dynamics-surface complexation modeling approach[J]. Environ Sci Technol, 2018, 52(15): 8501-8509.
[62] [62] BIAN L, NIE J N, JIANG X Q, et al. Selective removal of uranyl from aqueous solutions containing a mix of toxic metal ions using core-shell MFe2O4-TiO2 nanoparticles of montmorillonite edge sites[J]. ACS Sustainable Chem Eng, 2018, 6(12): 16267-16278.
[63] [63] YONG R N. Overview of modeling of clay microstructure and interactions for prediction of waste isolation barrier performance[J]. Eng Geol, 1999, 54(1/2): 83-91.
[64] [64] EBRAHIMI D, PELLENQ R J M, WHITTLE A J. Mesoscale simulation of clay aggregate formation and mechanical properties[J]. Granul Matter, 2016, 18(3): 49.
[65] [65] KANG X, SUN H M, YANG W, et al. Wettability of clay aggregates—a coarse-grained molecular dynamic study[J]. Appl Surf Sci, 2020, 532: 147423.
[66] [66] BANDERA S, O’SULLIVAN C, TANGNEY P, et al. Coarse-grained molecular dynamics simulations of clay compression[J]. Comput Geotech, 2021, 138: 104333.
[67] [67] SJOBLOM K J. Coarse-grained molecular dynamics approach to simulating clay behavior[J]. J Geotech Geoenviron Eng, 2016, 142(2): 06015013.
[68] [68] ZHANG Y T, OPLETAL G, BRIGGS S, et al. Mechanical properties and pore network connectivity of sodium montmorillonite as predicted by a coarse-grained molecular model[J]. Appl Clay Sci, 2023, 243: 107077.
[69] [69] KATTI D R, MATAR M I, KATTI K S, et al. Multiscale modeling of swelling clays: A computational and experimental approach[J]. KSCE J Civ Eng, 2009, 13(4): 243-255.
[70] [70] JARADAT K A, ABDELAZIZ S L. On the use of discrete element method for multi-scale assessment of clay behavior[J]. Comput Geotech, 2019, 112: 329-341.
[71] [71] JARADAT K A, ABDELAZIZ S L. Simplifying the physico-chemical contacts in cohesive soils for efficient DEM simulations[J]. Comput Geotech, 2023, 154: 105155.
Get Citation
Copy Citation Text
DAI Wenjie, CHEN Yonggui, LI Yucheng, YE Weimin, WANG Qiong. Advanced Progress in Molecular Dynamics Simulations of Buffer/Backfill Materials for Deep Geological Repository[J]. Journal of the Chinese Ceramic Society, 2025, 53(5): 1269
Category:
Received: Sep. 27, 2024
Accepted: May. 29, 2025
Published Online: May. 29, 2025
The Author Email: