Laser & Optoelectronics Progress, Volume. 60, Issue 18, 1811009(2023)

Research Progress of Antireflection Coating for Terahertz Functional Devices

Jiaqi Shi1、† and Juncheng Cao†、*
Author Affiliations
  • Key Laboratory of Terahertz Solid State Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
  • show less
    References(38)

    [1] Englert C R, Birk M, Maurer H. Antireflection coated, wedged, single-crystal silicon aircraft window for the far-infrared[J]. IEEE Transactions on Geoscience and Remote Sensing, 37, 1997-2003(1999).

    [2] Rungsawang R, Jukam N, Maysonnave J et al. Gain enhancement in a terahertz quantum cascade laser with parylene antireflection coatings[J]. Applied Physics Letters, 98, 456-462(2011).

    [3] Sahin S, Nahar N K, Sertel K. Thin-film SUEX as an antireflection coating for mmW and THz applications[J]. IEEE Transactions on Terahertz Science and Technology, 9, 417-421(2019).

    [4] Gatesman A J, Waldman J, Ji M et al. An anti-reflection coating for silicon optics at terahertz frequencies[J]. IEEE Microwave and Guided Wave Letters, 10, 264-266(2000).

    [5] Hosako I. Multilayer optical thin films for use at terahertz frequencies: method of fabrication[J]. Applied Optics, 44, 3769-3773(2005).

    [6] Wang W L, Rong X H. Nanostructure multilayers as broadband antireflection coating used at terahertz frequencies region[J]. Applied Mechanics and Materials, 110/111/112/113/114/115/116, 3777-3780(2011).

    [7] Ahmed A, Braconnier A, Gibbs J et al. Low-cost antireflection coatings for terahertz light employing multilayered polymer films and adhesives[C](2021).

    [8] Raut H K, Ganesh V A, Nair A S et al. Anti-reflective coatings: a critical, in-depth review[J]. Energy & Environmental Science, 4, 3779-3804(2011).

    [9] Mcknight S W, Stewart K P, Drew H D et al. Wavelength-independent anti-interference coating for the far-infrared[J]. Infrared Physics, 27, 327-333(1987).

    [10] Kröll J, Darmo J, Unterrainer K. High-performance terahertz electro-optic detector[J]. Electronics Letters, 40, 763-764(2004).

    [11] Thoman A, Kern A, Helm H et al. Nanostructured gold films as broadband terahertz antireflection coatings[J]. Physical Review B, 77, 195405(2008).

    [12] Ma G H, Li D, Ma H et al. Carrier concentration dependence of terahertz transmission on conducting ZnO films[J]. Applied Physics Letters, 93, 1106-1110(2008).

    [13] Zhu Y H, Zhao Y, Holtz M et al. Effect of substrate orientation on terahertz optical transmission through VO2 thin films and application to functional antireflection coatings[J]. Journal of the Optical Society of America B, 29, 2373-2381(2012).

    [14] Kröll J, Darmo J, Unterrainer K. Metallic wave-impedance matching layers for broadband terahertz optical systems[J]. Optics Express, 15, 6552-6560(2007).

    [15] Zhou Y X, Xu X L, Hu F R et al. Graphene as broadband terahertz antireflection coating[J]. Applied Physics Letters, 104, 97-105(2014).

    [16] Zhou Y X, Yiwen E, Zhu L P et al. Terahertz wave reflection impedance matching properties of graphene layers at oblique incidence[J]. Carbon, 96, 1129-1137(2016).

    [17] Lai W E, Liu G, Gou H G et al. Near-IR light-tunable omnidirectional broadband terahertz wave antireflection based on a PEDOT: PSS/graphene hybrid coating[J]. ACS Applied Materials & Interfaces, 14, 43868-43876(2022).

    [18] Bernhard C. Structural and functional adaptation in a visual system system[J]. Endeavour, 26, 79-84(1967).

    [19] Chen Y W, Han P Y, Zhang X C. Tunable broadband antireflection structures for silicon at terahertz frequency[J]. Applied Physics Letters, 94, 041106(2009).

    [20] Chen W Y T, Han P Y, Kuo M L et al. Terahertz broadband antireflection device with slowly changing refractive index[J]. Acta Physica Sinica, 61, 088401(2012).

    [21] Li Y Z, Cai B, Zhu Y M. Antireflective broadband micro structure at terahertz range by a hot deformation[C](2015).

    [22] Clapham P B, Hutley M C. Reduction of lens reflexion by the “moth eye” principle[J]. Nature, 244, 281-282(1973).

    [23] Chen P J. Study on wide-band anti-reflection technology of sub-wavelength structure[D](2013).

    [24] Yu W X, Lu Z W, Wang P et al. Vector diffracted characteristic of tapered profile two-dimensional subwavelength surface-relief structure[J]. Acta Photonica Sinica, 30, 331-335(2001).

    [25] Li X, Hu X K, Li Y F et al. A three-step procedure for the design of broadband terahertz antireflection structures based on a subwavelength pyramidal-frustum grating[J]. Journal of Lightwave Technology, 32, 1463-1471(2014).

    [26] Sun H, Liu J X, Zhou C et al. Enhanced transmission from visible to terahertz in ZnTe crystals with scalable subwavelength structures[J]. ACS Applied Materials & Interfaces, 13, 16997-17005(2021).

    [27] Tzibizov I A, Kropotov G I, Pavelyev V S et al. 3-level broadband THz antireflective structure on silicon surface[C], 2276, 020037(2020).

    [29] Ding L, Wu Q Y S, Song J F et al. Perfect broadband terahertz antireflection by deep-subwavelength, thin, lamellar metallic gratings[J]. Advanced Optical Materials, 1, 910-914(2013).

    [30] Ding L, Wu Q Y S, Teng J H. Polarization independent broadband terahertz antireflection by deep-subwavelength thin metallic mesh[J]. Laser & Photonics Reviews, 8, 941-945(2014).

    [31] Qiao N, Yan F P, Wang W et al. Dual-band terahertz metamaterial antireflection coating based on multilayered structure[J]. Chinese Journal of Lasers, 46, 0614031(2019).

    [32] Su S S, Yan F P, Tan S Y et al. Design of antireflection coating based on broadband terahertz metamaterial with stand-up structure[J]. Chinese Journal of Lasers, 45, 0414001(2018).

    [33] Chen H T, Huang L, Azad A et al. Terahertz metasurfaces for antireflection coatings[C](2015).

    [34] Huang L, Zeng B B, Chang C C et al. Terahertz antireflection coating enabled by a subwavelength metallic mesh capped with a thin dielectric film[J]. Terahertz Science and Technology, 9, 1-9(2016).

    [35] Zhang J, Ade P A R, Mauskopf P et al. New artificial dielectric metamaterial and its application as a terahertz antireflection coating[J]. Applied Optics, 48, 6635-6642(2009).

    [36] Chu H C, Zhang H Y, Zhang Y et al. Invisible surfaces enabled by the coalescence of anti-reflection and wavefront controllability in ultrathin metasurfaces[J]. Nature Communications, 12, 4523(2021).

    [37] Du C, Zhou D, Guo H H et al. An ultra-broadband terahertz metamaterial coherent absorber using multilayer electric ring resonator structures based on anti-reflection coating[J]. Nanoscale, 12, 9769-9775(2020).

    [38] Ge J H, Zhang Y Q, Dong H X et al. Nanolayered VO2-based switchable terahertz metasurfaces as near-perfect absorbers and antireflection coatings[J]. ACS Applied Nano Materials, 5, 5569-5577(2022).

    Tools

    Get Citation

    Copy Citation Text

    Jiaqi Shi, Juncheng Cao. Research Progress of Antireflection Coating for Terahertz Functional Devices[J]. Laser & Optoelectronics Progress, 2023, 60(18): 1811009

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Imaging Systems

    Received: Jun. 19, 2023

    Accepted: Aug. 22, 2023

    Published Online: Sep. 20, 2023

    The Author Email: Juncheng Cao (jccao@mail.sim.ac.cn)

    DOI:10.3788/LOP231565

    Topics