Chinese Journal of Lasers, Volume. 51, Issue 13, 1310004(2024)

Mobile Laser Scanning Point Cloud Classification Based on Data Augmentation and Mask Learning

Xiangda Lei1, Haiyan Guan1,2、*, Ke Chen1, Nannan Qin1, and Yufu Zang1
Author Affiliations
  • 1School of Remote Sensing & Geomatics Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, Jiangsu , China
  • 2Technology Innovation Center for Integrated Applications in Remote Sensing and Navigation, Ministry of Natural Resources, Nanjing 210044, Jiangsu , China
  • show less
    Figures & Tables(14)
    Flow chart of point cloud classification
    EC-Mix3D data augmentation strategy
    RandLA-Net structure
    Toronto3D dataset
    Paris dataset
    Experimental results on Toronto3D dataset. (a) Overhead classification result; (b) side-view classification result; (c) overhead misclassification result; (d) side-view misclassification result
    Experimental results on Paris dataset. (a) Soufflot0 classification result; (b) Soufflot3 classification result; (c) Soufflot0 misclassification result; (d) Soufflot3 misclassification result
    Comparison of model complexity. (a) Comparison of Parameters; (b) comparison of FLOPs
    • Table 1. Quantitative classification results of different deep learning methods on Toronto3D dataset

      View table

      Table 1. Quantitative classification results of different deep learning methods on Toronto3D dataset

      MethodOAmIoUIoU
      RoadRoad markingNaturalBuildingUtility linePoleCarFence
      MappingC94.782.997.267.997.693.886.982.193.744.1
      RandLA-Net94.481.896.764.296.994.288.077.893.442.9
      ResDLPS-Net96.580.395.859.896.190.986.879.989.443.3
      BAF-LAC95.282.296.664.796.492.886.183.993.743.5
      BAAF-Net94.281.296.867.396.892.286.882.393.134.0
      LACV-Net97.482.797.166.997.393.087.383.493.443.1
      RFCR97.381.296.865.397.193.686.581.794.034.4
      Baseline95.977.595.053.596.392.086.377.990.928.0
      Ours97.783.897.470.597.293.287.483.393.947.7
    • Table 2. Quantitative classification results of different deep learning methods on Paris dataset

      View table

      Table 2. Quantitative classification results of different deep learning methods on Paris dataset

      CategoryBaselineBAF-LACBAAF-NetRFCRSCF-NetOurs
      IoUBuilding88.3086.1885.9288.8688.5188.64
      Fence27.4343.9141.7122.5841.8832.01
      Other34.7329.1333.2232.0936.1329.52
      Pedestrian78.1569.0170.9970.4778.0183.59
      Pole59.6861.6655.1963.5169.4674.09
      RoadLine67.1074.2669.8876.0569.6774.15
      Road93.3194.4092.8394.8094.0295.55
      SideWalk82.1381.6177.7081.3184.3387.08
      Vegetation92.6493.8692.2993.8994.8095.33
      Vehicles93.9691.7892.8993.5493.9696.37
      TrafficSign61.3560.1848.6555.9658.2559.39
      TrafficLight44.2654.9138.6435.2549.4467.31
      Static40.2644.9239.5546.9260.5346.64
      Dynamic22.7821.9823.8426.6327.0632.67
      OA91.6891.8490.8892.5292.7493.20
      mIoU63.2964.8461.6662.9967.5868.74
    • Table 3. Ablation experiment results

      View table

      Table 3. Ablation experiment results

      MethodEC-Mix3D data augmentationMask learning frameworkOA /%mIoU /%
      Mask supervisionConsistency constraintError prediction entropy maximization
      Baseline95.8577.48
      Method A97.0180.86
      Method B97.2982.07
      Method C97.3882.41
      Method D97.3382.81
      Method E97.3780.97
      Ours97.6583.82
    • Table 4. Experimental results of different mask block sizes

      View table

      Table 4. Experimental results of different mask block sizes

      Mask block size/mOA /%mIoU /%
      0.597.5382.40
      1.097.6583.82
      1.597.7782.91
    • Table 5. Experimental results of different mask ratios

      View table

      Table 5. Experimental results of different mask ratios

      Mask ratioOA /%mIoU /%
      2/397.5783.12
      1/297.6283.50
      1/397.6583.82
      1/497.6483.73
    • Table 6. Experimental results of different data augmentation strategies

      View table

      Table 6. Experimental results of different data augmentation strategies

      Data augmentation strategyOA /%mIoU /%
      Global data augmentation97.3781.17
      Mix3D97.5882.59
      PolarMix97.4381.62
      EC-Mix3D97.6583.82
    Tools

    Get Citation

    Copy Citation Text

    Xiangda Lei, Haiyan Guan, Ke Chen, Nannan Qin, Yufu Zang. Mobile Laser Scanning Point Cloud Classification Based on Data Augmentation and Mask Learning[J]. Chinese Journal of Lasers, 2024, 51(13): 1310004

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: remote sensing and sensor

    Received: Nov. 13, 2023

    Accepted: Dec. 15, 2023

    Published Online: Jul. 2, 2024

    The Author Email: Haiyan Guan (guanhy.nj@nuist.edu.cn)

    DOI:10.3788/CJL231396

    CSTR:32183.14.CJL231396

    Topics