International Journal of Extreme Manufacturing, Volume. 7, Issue 4, 45008(2025)

Mechanical field assisted additive manufacturing of ultrahigh strength aluminum alloy

Liu Wenjie, Shen Shengnan, Meng Jinlong, Xiao Jiafeng, Li Hui, Du Hejun, Yin Qianxing, and Tan Chaolin
References(81)

[1] [1] Aboulkhair N T, Simonelli M, Parry L, Ashcroft I, Tuck C and Hague R. 2019. 3D printing of aluminium alloys: additive manufacturing of aluminium alloys using selective laser melting.Prog. Mater. Sci.106, 100578.

[2] [2] Zhao H, Chakraborty P, Ponge D, Hickel T, Sun B H, Wu C H, Gault B and Raabe D. 2022. Hydrogen trapping and embrittlement in high-strength al alloys.Nature602, 437–441.

[3] [3] Liu T S, Chen P, Qiu F, Yang H Y, Jin N T Y, Chew Y, Wang D, Li R D, Jiang Q C and Tan C L. 2024. Review on laser directed energy deposited aluminum alloys.Int. J. Extrem. Manuf.6, 022004.

[4] [4] Zhang W and Xu J. 2022. Advanced lightweight materials for automobiles: a review.Mater. Des.221, 110994.

[5] [5] Raabe D et al. 2022. Making sustainable aluminum by recycling scrap: the science of “dirty” alloys.Prog. Mater. Sci.128, 100947.

[6] [6] Liu Z B, Sun J N, Yan Z G, Lin Y J, Liu M P, Roven H J and Dahle A K. 2021. Enhanced ductility and strength in a cast Al-Mg alloy with high Mg content.Mater. Sci. Eng.A806, 140806.

[7] [7] Wang M B, Li R D, Yuan T C, Chen C, Zhou L B, Chen H, Zhang M and Xie S Y. 2019. Microstructures and mechanical property of AlMgScZrMn—a comparison between selective laser melting, spark plasma sintering and cast.Mater. Sci. Eng.A756, 354–364.

[8] [8] Gao S B et al. 2023. Additive manufacturing of alloys with programmable microstructure and properties.Nat. Commun.14, 6752.

[9] [9] Tan C L, Liu Y C, Weng F, Ng F L, Su J L, Xu Z K, Ngai X D and Chew Y. 2022. Additive manufacturing of voxelized heterostructured materials with hierarchical phases.Addit. Manuf.54, 102775.

[10] [10] Li R D, Wang M B, Li Z M, Cao P, Yuan T C and Zhu H B. 2020. Developing a high-strength Al-Mg-Si-Sc-Zr alloy for selective laser melting: crack-inhibiting and multiple strengthening mechanisms.Acta Mater.193, 83–98.

[11] [11] Zhang H, Zhu H H, Qi T, Hu Z H and Zeng X Y. 2016. Selective laser melting of high strength Al-Cu-Mg alloys: processing, microstructure and mechanical properties.Mater. Sci. Eng.A656, 47–54.

[12] [12] Zhu Z G, Ng F L, Seet H L, Lu W J, Liebscher C H, Rao Z Y, Raabe D and Mui Ling Nai S. 2022. Superior mechanical properties of a selective-laser-melted AlZnMgCuScZr alloy enabled by a tunable hierarchical microstructure and dualnanoprecipitation.Mater. Today52, 90–101.

[13] [13] Spierings A B, Dawson K, Kern K, Palm F and Wegener K. 2017. SLM-processed Sc- and Zr- modified Al-Mg alloy: mechanical properties and microstructural effects of heat treatment.Mater. Sci. Eng.A701, 264–273.

[14] [14] Cabrera Correa L, Gonzlez Rovira L, Ojeda Lpez A, de Dios Lpez Castro J and Botana F J. 2023. Localized and stress corrosion cracking of sensitized Al-Mg-Sc-Zr alloy manufactured by laser powder bed fusion.Corros. Sci.218, 111166.

[15] [15] Zhu Z G, Hu Z H, Seet H L, Liu T T, Liao W H, Ramamurty U and Ling Nai S M. 2023. Recent progress on the additive manufacturing of aluminum alloys and aluminum matrix composites: microstructure, properties, and applications.Int. J. Mach. Tools Manuf.190, 104047.

[16] [16] Bayoumy D, Kan W H, Wu X H, Zhu Y M and Huang A J. 2023. The latest development of Sc-strengthened aluminum alloys by laser powder bed fusion.J. Mater. Sci. Technol.149, 1–17.

[17] [17] Yuan T, Yu Z L, Chen S J, Xu M and Jiang X Q. 2020. Loss of elemental Mg during wire+arc additive manufacturing of Al-Mg alloy and its effect on mechanical properties.J. Manuf. Process.49, 456–462.

[18] [18] Huang Y, Hua X M, Shen C, Li F, Ding Y H and Mou G. 2021. Metal evaporation flux across knudsen layer in laser keyhole welding of Al-Mg alloys with pressure balance condition method.Appl. Surf. Sci.536, 147838.

[19] [19] Li X, Liu Y Z, Tan C L and Zou Y M. 2023. Laser powder bed fusion of a novel crack-free Al-Mg-Sc-Zr alloy: printability, microstructure characterization and mechanical performance.Opt. Laser Technol.162, 109281.

[20] [20] Zhang H, Dai D H, Yuan L H, Liu H and Gu D D. 2023. Temperature gradient induced tough-brittle transition behavior of a high-strength Al-4.2Mg-0.4Sc-0.2Zr alloy fabricated by laser powder bed fusion additive manufacturing.Addit. Manuf.73, 103655.

[21] [21] Kuo C N and Peng P C. 2023. The strengthening mechanism synergy of heat-treated 3D printed Al-Sc alloy.Virtual Phys. Prototyp.18, e2166539.

[22] [22] Jia Q B, Rometsch P, Krnsteiner P, Chao Q, Huang A J, Weyland M, Bourgeois L and Wu X H. 2019. Selective laser melting of a high strength Al-Mn-Sc alloy: alloy design and strengthening mechanisms.Acta Mater.171, 108–118.

[23] [23] Ji W M, Zhou R H, Vivegananthan P, See Wu M, Gao H J and Zhou K. 2023. Recent progress in gradient-structured metals and alloys.Prog. Mater. Sci.140, 101194.

[24] [24] Chen X Y, Lu T W, Yao N, Chen H Y, Sun B H, Xie Y, Chen Y F, Wan B B, Zhang X C and Tu S T. 2023. Enhanced fatigue resistance and fatigue-induced substructures in an additively manufactured CoCrNi medium-entropy alloy treated by ultrasonic surface rolling process.Int. J. Plast.169, 103721.

[25] [25] Zhou J T, Zhou X, Li H, Hu J W, Han X and Liu S. 2022. In-situ laser shock peening for improved surface quality and mechanical properties of laser-directed energy-deposited AlSi10Mg alloy.Addit. Manuf.60, 103177.

[26] [26] Tan C L et al. 2023. Review on field assisted metal additive manufacturing.Int. J. Mach. Tools Manuf.189, 104032.

[27] [27] Liu W J, Li H, Yin Q X and Zhou X. 2025. Promoting densification and strengthening effect of ultrasonic impact treatment on haynes 230 alloy manufactured by laser powder bed fusion.J. Mater. Sci. Technol.216, 226–240.

[28] [28] Deng W W, Wang C Y, Lu H F, Meng X K, Wang Z, Lv J M, Luo K Y and Lu J Z. 2023. Progressive developments, challenges and future trends in laser shock peening of metallic materials and alloys: a comprehensive review.Int. J. Mach. Tools Manuf.191, 104061.

[29] [29] Li X and Liu Y Z. 2023. Microstructure characterization and mechanical performance of laser powder bed fusion processed AlMgScZr alloy: effect of heat treatment.Mater. Sci. Eng.A862, 144501.

[30] [30] Deillon L, Jensch F, Palm F and Bambach M. 2022. A new high strength Al-Mg-Sc alloy for laser powder bed fusion with calcium addition to effectively prevent magnesium evaporation.J. Mater. Process. Technol.300, 117416.

[31] [31] Zhao D S, Long D F, Niu T R, Zhang T F, Hu X and Liu Y J. 2022. Effect of Mg loss and microstructure on anisotropy of 5356 wire arc additive manufacturing.J. Mater. Eng. Perform.31, 8473–8482.

[32] [32] Zhao J H, Luo L S, Zheng X N, Zhang T, Luo H, Li Z, Liu T, Wang L and Su Y Q. 2024. The effect of Mn content on a novel Al-Mg-Si-Sc-Zr alloy produced by laser powder bed fusion: the microstructure and mechanical behavior.J. Mater. Res. Technol.28, 989–1001.

[33] [33] Ponnusamy P, Rahman Rashid R A, Masood S H, Ruan D and Palanisamy S. 2020. Mechanical properties of SLM-printed aluminium alloys: a review.Materials13, 4301.

[34] [34] Li X Z, Fang X W, Zhang M G, Zhang H K, Duan Y S and Huang K. 2023. Gradient microstructure and prominent performance of wire-arc directed energy deposited magnesium alloy via laser shock peening.Int. J. Mach. Tools Manuf.188, 104029.

[35] [35] Kalentics N, Boillat E, Peyre P, Gorny C, Kenel C, Leinenbach C, Jhabvala J and Log R E. 2017. 3D laser shock peening—a new method for the 3D control of residual stresses in selective laser melting.Mater. Des.130, 350–356.

[36] [36] Lim C H, Li H, Krishnan M, Chen K W and Li J R. 2023. Novel method of residual stress reduction for AlSi10Mg manufactured using selective laser melting without compromise of mechanical strength.Virtual Phys. Prototyp.18, e2131583.

[37] [37] Zhu L H, Guan Y J, Wang Y J, Xie Z D, Lin J and Zhai J Q. 2017. Influence of process parameters of ultrasonic shot peening on surface roughness and hydrophilicity of pure titanium.Surf. Coat. Technol.317, 38–53.

[38] [38] Meng X K, Zhao Y M, Zhou J Z, Huang S, Leng X M and Li L. 2022. Surface properties of 2024 aluminum alloy strengthened by laser ultrasonic composite shock peening.Chin. J. Lasers49, 1602003.

[39] [39] Pan X L, Zhou L C, Wang C X, Yu K, Zhu Y Q, Yi M, Wang L F, Wen S F, He W F and Liang X Q. 2023. Microstructure and residual stress modulation of 7075 aluminum alloy for improving fatigue performance by laser shock peening.Int. J. Mach. Tools Manuf.184, 103979.

[40] [40] Tekumalla S, Seita M and Zaefferer S. 2024. Delineating dislocation structures and residual stresses in additively manufactured alloys.Acta Mater.262, 119413.

[41] [41] Xiao Y M, Yang Y Q, Wang D, Liu L Q, Liu Z B, Wu S B, Zhou H X, Liu Z X and Song C H. 2023. In-situ synthesis of high strength and toughness TiN/Ti6Al4V sandwich composites by laser powder bed fusion under a nitrogen-containing atmosphere.CompositesB253, 110534.

[42] [42] Bi J et al. 2022. Microstructure, tensile properties and heatresistant properties of selective laser melted AlMgScZr alloy under long-term aging treatment.Mater. Sci. Eng.A833, 142527.

[43] [43] Chen X J, Xie X C, Zhang Y P, Wang H Y and Liang Z W. 2023. Tungsten carbide coating prepared by ultrasonic shot peening to improve the wear properties of magnesium alloys.J. Mater. Res. Technol.26, 2451–2464.

[44] [44] Liu H, Gu D D, Shi K Y, Zhang H, Li L X, Zhang Y J, Li J Y and Qi J F. 2024. High-strength aluminum alloy processed by micro laser powder bed fusion (μ-LPBF): coordination of laser formability, microstructure evolution, and mechanical properties.J. Mater. Process. Technol.332, 118580.

[45] [45] Bayoumy D et al. 2022. Origin of non-uniform plasticity in a high-strength Al-Mn-Sc based alloy produced by laser powder bed fusion.J. Mater. Sci. Technol.103, 121–133.

[46] [46] Chen Y T, Wang K and Ren Z. 2024. Interaction between phase transformation and static recrystallization during annealing of rolled TC18 titanium alloy.J. Mater. Sci. Technol.202, 1–15.

[47] [47] Chen W, Xu L Y, Zhao L, Han Y D, Wang X, Hu C C and Jing H Y. 2022. Application of hybrid additive manufacturing technology for performance improvement of martensitic stainless steel.Addit. Manuf.51, 102648.

[48] [48] Liu Z Z, Zhou Q H, Liang X K, Wang X B, Li G C, Vanmeensel K and Xie J X. 2024. Alloy design for laser powder bed fusion additive manufacturing: a critical review.Int. J. Extrem. Manuf.6, 022002.

[49] [49] Bi J, Lei Z L, Chen Y B, Chen X, Tian Z, Lu N N, Qin X K and Liang J W. 2021. Microstructure, tensile properties and thermal stability of AlMgSiScZr alloy printed by laser powder bed fusion.J. Mater. Sci. Technol.69, 200–211.

[50] [50] Li Q G, Li G C, Lin X, Zhu D M, Jiang J H, Shi S Q, Liu F G, Huang W D and Vanmeensel K. 2022. Development of a high strength Zr/Sc/Hf-modified Al-Mn-Mg alloy using laser powder bed fusion: design of a heterogeneous microstructure incorporating synergistic multiple strengthening mechanisms.Addit. Manuf.57, 102967.

[51] [51] Bayoumy D, Boll T, Schliephake D, Wu X H, Zhu Y M and Huang A J. 2022. On the complex intermetallics in an Al-Mn-Sc based alloy produced by laser powder bed fusion.J. Alloys Compd.901, 163571.

[52] [52] Zhang H, Zhang L C, Liu H Y, Niu X D, Lam M C, Zhang W Z, Jin X J, Chu F Z, Wu X H and Cao S. 2023. Strong and ductile Al-Mn-Mg-Sc-Zr alloy achieved in fabrication-rate enhanced laser powder bed fusion.Virtual Phys. Prototyp.18, e2250769.

[53] [53] Sun J, Gao L, Liu Q, Wang P, Qu X H and Zhang B C. 2023. Novel isotropic mechanical properties of laser powderbed fusion Sc/Zr modified al alloy.Mater. Sci. Eng.A872, 145003.

[54] [54] He P D, Webster R F, Yakubov V, Kong H, Yang Q, Huang S K, Ferry M, Kruzic J J and Li X P. 2021. Fatigue and dynamic aging behavior of a high strength Al-5024 alloy fabricated by laser powder bed fusion additive manufacturing.Acta Mater.220, 117312.

[55] [55] Hua Q, Wang W J, Li R D, Zhu H B, Lin Z H, Xu R, Yuan T C and Liu K. 2022. Microstructures and mechanical properties of Al-Mg-Sc-Zr alloy additively manufactured by laser direct energy deposition.Chin. J. Mech. Eng.: Addit. Manuf. Front.1, 100057.

[56] [56] Baek M S, Shah A W, Kim Y K, Kim S K, Kim B H and Lee K A. 2023. Microstructures, tensile properties, and strengthening mechanisms of novel Al-Mg alloys with high Mg content.J. Alloys Compd.950, 169866.

[57] [57] Li G et al. 2024. Additively manufactured fine-grained ultrahigh-strength bulk aluminum alloys with nanostructured strengthening defects.Mater. Today76, 40–51.

[58] [58] Chen Y, Xiao C W, Zhu S, Li Z W, Yang W X, Zhao F, Yu S F and Shi Y S. 2022. Microstructure characterization and mechanical properties of crack-free Al-Cu-Mg-Y alloy fabricated by laser powder bed fusion.Addit. Manuf.58, 103006.

[59] [59] Lu J W, Zheng H, Ji X C, Guan Y, Wang Z L, Cheng J and Zhang W. 2024. Crack characteristics analysis and mechanisms in GH3536 alloy manufactured by laser powder bed fusion.Eng. Fail. Anal.162, 108382.

[60] [60] Song Y L, Wu Y H, Lu J, Mei M L, Xie L C and Hao C C. 2023. Promoting dynamic recrystallization of Al-Zn-Mg-Cu alloy via electroshock treatment.Metals13, 944.

[61] [61] Cui L Q, Yu C H, Jiang S, Sun X Y, Peng R L, Lundgren J E and Moverare J. 2022. A new approach for determining GND and SSD densities based on indentation size effect: an application to additive-manufactured Hastelloy X.J. Mater. Sci. Technol.96, 295–307.

[62] [62] Li Y J, Liu X T, Wang F, Zhou W F and Ren X D. 2024. Influence of ultrasonic shot peening on the surface acid etching behavior of pure titanium.Mater. Chem. Phys.313, 128720.

[63] [63] Kun Q, Yang L M and Hu S S. 2009. Mechanism of strain rate effect based on dislocation theory.Chin. Phys. Lett.26, 036103.

[64] [64] Bermingham M J, StJohn D H, Krynen J, Tedman Jones S and Dargusch M S. 2019. Promoting the columnar to equiaxed transition and grain refinement of titanium alloys during additive manufacturing.Acta Mater.168, 261–274.

[65] [65] Martin J H et al. 2020. Grain refinement mechanisms in additively manufactured nano-functionalized aluminum.Acta Mater.200, 1022–1037.

[66] [66] Rometsch P A, Zhu Y M, Wu X H and Huang A J. 2022. Review of high-strength aluminium alloys for additive manufacturing by laser powder bed fusion.Mater. Des.219, 110779.

[67] [67] Tan Q Y and Zhang M X. 2024. Recent advances in inoculation treatment for powder-based additive manufacturing of aluminium alloys.Mater. Sci. Eng.R158, 100773.

[68] [68] Xie X C, Ye Y, Zou Z X, Mo Y D, Liang Z W and Tang G B. 2024. Improving the corrosion resistance of aluminum alloy welds through powder-ball combined ultrasonic shot peening.J. Mater. Process. Technol.332, 118557.

[69] [69] Wang Y C and Shi J. 2020. Recrystallization behavior and tensile properties of laser metal deposited Inconel 718 upon in-situ ultrasonic impact peening and heat treatment.Mater. Sci. Eng.A786, 139434.

[70] [70] Yin F, Zhang X D, Chen F, Hu S, Ming K S, Zhao J H, Xie L C, Liu Y X, Hua L and Wang J. 2023. Understanding the microstructure refinement and mechanical strengthening of dualphase high entropy alloy during ultrasonic shot peening.Mater. Des.227, 111771.

[71] [71] Ekubaru Y, Gokcekaya O, Ishimoto T, Sato K, Manabe K, Wang P and Nakano T. 2022. Excellent strength-ductility balance of Sc-Zr-modified Al-Mg alloy by tuning bimodal microstructure via hatch spacing in laser powder bed fusion.Mater. Des.221, 110976.

[72] [72] Russell K C. 1980. Nucleation in solids: the induction and steady state effects.Adv. Colloid Interface Sci.13, 205–318.

[73] [73] Kim R E, Karthik G M, Amanov A, Heo Y U, Jeong S G, Gu G H, Park H, Kim E S, Lee D W and Kim H S. 2023. Superior gradient heterostructured alloys fabricated by laser powder bed fusion via annealing and ultrasonic nanocrystal surface modification.Scr. Mater.230, 115422.

[74] [74] Wang C Y, Luo K Y, Wang J and Lu J Z. 2022. Carbide-facilitated nanocrystallization of martensitic laths and carbide deformation in AISI 420 stainless steel during laser shock peening.Int. J. Plast.150, 103191.

[75] [75] Qin S, Yang M X, Jiang P, Wang J, Wu X L, Zhou H and Yuan F P. 2022. Designing structures with combined gradients of grain size and precipitation in high entropy alloys for simultaneous improvement of strength and ductility.Acta Mater.230, 117847.

[76] [76] Krug M E, Mao Z G, Seidman D N and Dunand D C. 2014. Comparison between dislocation dynamics model predictions and experiments in precipitation-strengthened Al–Li–Sc alloys.Acta Mater.79, 382–395.

[77] [77] Liu D H et al. 2023. Superior strength of laser-arc hybrid additive manufactured Al-Zn-Mg-Cu alloy enabled by a tunable microstructure.Addit. Manuf.68, 103526.

[78] [78] Xu H, Ren W J, Ma C Y, Xu L Y, Han Y D, Zhao L and Hao K D. 2023. Laser-directed energy deposition of ZrH2 particles reinforced Al7075 alloy: cracks elimination and strength enhancement.Addit. Manuf.78, 103877.

[79] [79] Wang G D, Zhou Y R, Cao J Y and Tian Y. 2024. Tensile properties and fracture behavior of Al-8Si alloy sheets with different Mg under natural aging.J. Mater. Sci.59, 7368–7386.

[80] [80] Wu D et al. 2023. Heterostructures enhance simultaneously strength and ductility of a commercial titanium alloy.Acta Mater.257, 119182.

[81] [81] Guo S K, Ma Z L, Xia G H, Li X Y, Xu Z Q, Li W Z, Jin X Y and Cheng X W. 2024. Pursuing ultrastrong and ductile medium entropy alloys via architecting nanoprecipitates-enhanced hierarchical heterostructure.Acta Mater.263, 119492.

Tools

Get Citation

Copy Citation Text

Liu Wenjie, Shen Shengnan, Meng Jinlong, Xiao Jiafeng, Li Hui, Du Hejun, Yin Qianxing, Tan Chaolin. Mechanical field assisted additive manufacturing of ultrahigh strength aluminum alloy[J]. International Journal of Extreme Manufacturing, 2025, 7(4): 45008

Download Citation

EndNote(RIS)BibTexPlain Text
Save article for my favorites
Paper Information

Category:

Received: Oct. 8, 2024

Accepted: Sep. 9, 2025

Published Online: Sep. 9, 2025

The Author Email:

DOI:10.1088/2631-7990/adbb95

Topics