Infrared and Laser Engineering, Volume. 51, Issue 5, 20210637(2022)

Research advances in optoelectronic devices of quantum dot-polymer nanocomposites

Xingfan Chen1,2,3, Bin Li1,2,3, Xueming Li1、*, and Libin Tang2,3、*
Author Affiliations
  • 1Key Laboratory of Advanced Technique & Preparation for Renewable Energy Materials, Ministry of Education, School of Energy and Environmental Sciences, Yunnan Normal University, Kunming 650500, China
  • 2Kunming Institute of Physics, Kunming 650223, China
  • 3Yunnan Key Laboratory of Advanced Photoelectric Materials & Devices, Kunming 650223, China
  • show less
    References(97)

    [1] Song Liyuan, Tang Libin, Hao Qun. Preparation, structure and properties of tin telluride and its research progress in infrared photodetection (Invited)[J]. Infrared and Laser Engineering, 50, 20211019(2021).

    [2] Liang Jing, Zhou Liangliang, Li Bin, et al. Research on the preparation, structure and infrared properties of Sb2Te3 quantum dots[J]. Infrared and Laser Engineering, 49, 0103002(2020).

    [3] Yang Qi, Shen Jun, Wei Xingzhan, et al. Recent progress on the mechanism and device structure of graphene-based infrared detectors[J]. Infrared and Laser Engineering, 49, 0103003(2020).

    [4] Won Y H, Cho O, Kim T, et al. Highly efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes[J]. Nature, 575, 634-638(2019).

    [5] Li L, Reiss P. One-pot synthesis of highly luminescent InP/ZnS nanocrystals without precursor injection[J]. Journal of the American Chemical Society, 130, 11588-11589(2008).

    [6] Zheng Yunhao, Han Xiao, Xu Jialiang. Recent progress in nonlinear optics of 2 D organic-inorganic hybrid perovskites (Invited)[J]. Infrared and Laser Engineering, 49, 20201063(2020).

    [7] Pal K, Aljabali A A, Kralj S, et al. Graphene-assembly liquid crystalline and nanopolymer hybridization: A review on switchable device implementations[J]. Chemosphere, 263, 128104(2021).

    [8] Shen X, Zheng Q B, Kim J K. Rational design of two-dimensional nanofillers for polymer nanocomposites toward multifunctional applications[J]. Progress in Materials Science, 115, 100708(2021).

    [9] Zhou Jianhui, Cheng Chunfu, Fan Yang, et al. Preparation and properties of novel highly flexible and stretchable conductive film electrode[J]. Optics and Precision Engineering, 27, 2062-2069(2019).

    [10] Ni Bijun, Fu Chao, Pan Shuang, et al. Semiconducting spaghetti-like organic–inorganic nanojunctions via sequential self-assembly of conjugated polymers and quantum dots[J]. Chemistry of Materials, 34, 847-853(2022).

    [11] Laysandra L, Kurniawan D, Wang C L, et al. Synergistic effect in a graphene quantum dot-enabled luminescent skinlike copolymer for long-term pH detection[J]. ACS Applied Materials & Interfaces, 13, 60413-60424(2021).

    [12] Ahmadi M, Zabihi O, Jeon S, et al. 2 D transition metal dichalcogenide nanomaterials: Advances, opportunities, and challenges in multi-functional polymer nanocomposites[J]. Journal of Materials Chemistry A, 8, 845-883(2020).

    [13] Li Bin, Chen Xingfan, Liang Jing, et al. CoTe2 QDs: preparation, structure and optical properties (Invited)[J]. Infrared and Laser Engineering, 50, 20211021(2021).

    [14] Samadi M, Sarikhani N, Zirak M, et al. Group 6 transition metal dichalcogenide nanomaterials: Synthesis, applications and future perspectives[J]. Nanoscale Horizons, 3, 90-204(2018).

    [15] Kalita H, Palaparthy V S, Baghini M S, et al. Electrochemical synthesis of graphene quantum dots from graphene oxide at room temperature and its soil moisture sensing properties[J]. Carbon, 165, 9-17(2020).

    [16] Ma Chunyang, Yang Dewei, Du Kaixiang, et al. Preparation and spectral characteristics of few-layer molybdenum disulfide thin films[J]. Semiconductor Materials, 45, 713-717(2020).

    [17] Zhou Liangliang, Sun Chuli, Li Xueming, et al. Tantalum disulfide quantum dots: preparation, structure, and properties[J]. Nanoscale Research Letters, 15, 1-8(2020).

    [18] Mandal A, Saha J, De G. Stable CdS QDs with intense broadband photoluminescence and high quantum yields[J]. Optical Materials, 34, 6-11(2011).

    [19] Liu Feng, Zhang Yaohong, Ding Chao, et al. Highly luminescent phase-stable CsPbI3 perovskite quantum dots achieving near 100% absolute photoluminescence quantum yield[J]. ACS Nano, 11, 10373-10383(2017).

    [20] Zhou Liangliang, Wu Hongbo, Li Xueming, et al. ZrS2 quantum dots: preparation, structure, and optical properties[J]. Acta Physica Sinica, 68, 148501(2019).

    [21] Leng Meiying, Chen Zhengwu, Yang Ying, et al. Lead-free, blue emitting bismuth halide perovskite quantum dots[J]. Angewandte Chemie International edtion in English, 55, 15012-15016(2016).

    [22] Zhou Liangliang, Liang Jing, Li Xueming, et al. Preparation and photoluminescence properties of rhenium disulfide quantum dots[J]. Journal of Yunnan Normal University, 39, 20-24(2019).

    [23] Xu Quan, Ding Lan, Wen Yangyang, et al. High photo-luminescence quantum yield of 18.7% by using nitrogen-doped Ti3C2 MXene quantum dots[J]. Journal of Materials Chemistry C, 6, 6360-6369(2018).

    [24] Jang E P, Han C Y, Lim S W, et al. Synthesis of alloyed ZnSeTe quantum dots as bright, color-pure blue emitters[J]. ACS Applied Materials & Interfaces, 11, 46062-46069(2019).

    [25] Müller M, Kaiser M, Stachowski G M, et al. Photoluminescence quantum yield and matrix-induced luminescence enhancement of colloidal quantum dots embedded in ionic crystals[J]. Chemistry of Materials, 26, 3231-3237(2014).

    [26] Yang Weiqiang, Gao Fei, Qiu Yue, et al. CsPbBr3-Quantum-Dots/polystyrene@silica hybrid microsphere structures with significantly improved stability for white LEDs[J]. Advanced Optical Materials, 1900546(2019).

    [27] Zheng Biyuan, Zheng Weihao, Jiang Ying, et al. WO3–WS2 vertical bilayer heterostructures with high photoluminescence quantum yield[J]. Journal of the American Chemical Society, 141, 11754-11758(2019).

    [28] David H, Noah B, Brent K, et al. Redefining near-unity luminescence in quantum dots with photothermal threshold quantum yield[J]. Science, 363, 1192-1202(2019).

    [29] Hinds S, Myrskog S, Levina L, et al. NIR-emitting colloidal quantum dots having 26% luminescence quantum yield in buffer solution[J]. Journal of the American Chemical Society, 129, 7218-7219(2007).

    [30] Gelloz B, Juangsa F B, Nozaki T, et al. Si/SiO2 core/shell luminescent silicon nanocrystals and porous silicon powders with high quantum yield, long lifetime, and good stability[J]. Frontiers in Physics, 7, 47(2019).

    [31] Shrestha A, Batmunkh M, Tricoli A. Near-infrared active lead chalcogenide quantum dots: Preparation, post-synthesis ligand exchange and applications in solar cells[J]. Angewandte Chemie International edtion in English, 58, 5202-5224(2019).

    [32] [32] Hishimone P N, Nagai H, Sato M. Methods of Fabricating Thin Films f Energy Materials Devices[M]Sato M, Lu L, Nagai H. Lithiumion BatteriesThin Film f Energy Materials Devices. London, United Kingdom: IntechOpen, 2020. (20200708)[20210902]. https:www.intechopen.comchapters70339.

    [33] Lin Li, Deng Bing, Sun Jingyu, et al. Bridging the gap between reality and ideal in chemical vapor deposition growth of graphene[J]. Chemical Reviews, 118, 9281-9343(2018).

    [34] Öberg V A, Zhang X, Johansson M B, et al. Hot-injection synthesized Ag2S quantum dots with broad light absorption and high stability for solar cell applications[J]. Chemistry of Nanomaterials for Energy, Biology and More, 4, 1223-1230(2018).

    [35] Xin Yumeng, Zhao Hongjie, Zhang Jiuyang. Highly stable and luminescent perovskite–polymer composites from a convenient and universal strategy[J]. ACS Applied Materials & Interfaces, 10, 4971-4980(2018).

    [36] Zhao Xun, Wang Ailin, Gao Sili, et al. Enhancing photoluminescence of carbon quantum dots doped PVA films with randomly dispersed silica microspheres[J]. Scientific Reports, 10, 5710(2020).

    [37] Şen F B, Beğiç N, Bener M, et al. Fluorescence turn-off sensing of TNT by polyethylenimine capped carbon quantum dots[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 271, 120884(2022).

    [38] Wu Junrui, He Jun, Yin Kai, et al. Robust hierarchical porous PTFE film fabricated via femtosecond laser for self-cleaning passive cooling[J]. Nano Letters, 21, 4209-4216(2021).

    [39] Wong Y C, Ng J D A, Tan Z K. Perovskite-Initiated photopolymerization for singly dispersed luminescent nanocomposites[J]. Advanced Materials, 30, e1800774(2018).

    [40] Huang Yanni, Liu Jianjun, Yu Yingchun, et al. Preparation and multicolored fluorescent properties of CdTe quantum dots/polymethylmethacrylate composite films[J]. Journal of Alloys and Compounds, 647, 578-584(2015).

    [41] Hill S K E, Connell R, Held J, et al. Poly(methyl methacrylate) films with high concentrations of silicon quantum dots for visibly transparent luminescent solar concentrators[J]. ACS Applied Materials & Interfaces, 12, 4572-4578(2020).

    [42] Mahmoud W E. Structure and optoelectronic properties of PbSe quantum dots /PVA. Does the polymer molecular weight matter?[J]. Polymers for Advanced Technologies, 22, 2550-2555(2011).

    [43] Horti N C, Kamatagi M D, Patil N R, et al. Synthesis and photoluminescence properties of polycarbazole/tin oxide (PCz/SnO2) polymer nanocomposites[J]. Polymer Bulletin, 78, 6321-6336(2020).

    [44] Ensafi A A, Nasr-Esfahani P, Rezaei B. Synthesis of molecularly imprinted polymer on carbon quantum dots as an optical sensor for selective fluorescent determination of promethazine hydrochloride[J]. Sensors and Actuators B:Chemical, 257, 889-896(2018).

    [45] Mary Vijila C V, Rajeev Kumar K, Jayaraj M K. Stokes shift engineered, stable core-shell perovskite nanoparticle – Poly(methyl methacrylate) composites with high photo-luminescence quantum yield[J]. Optical Materials, 94, 241-248(2019).

    [46] Kovalchuk A, Huang K, Xiang C, et al. Luminescent polymer composite films containing coal-derived graphene quantum dots[J]. ACS Applied Materials & Interfaces, 7, 26063-26068(2015).

    [47] Stan C S, Secula M S, Sibiescu D. Highly luminescent polystyrene embedded CdSe quantum dots obtained through a modified colloidal synthesis route[J]. Electronic Materials Letters, 8, 275-281(2012).

    [48] Tong Lili, Wang Xiuxiu, Chen Zhenzhen, et al. One-step fabrication of functional carbon dots with 90% fluorescence quantum yield for long-term lysosome imaging[J]. Analytical Chemistry, 92, 6430-6436(2020).

    [49] Cao Xiaodong, Li Changming, Bao Haifeng, et al. Fabrication of strongly fluorescent quantum dot-polymer composite in aqueous solution[J]. Chemistry Materials, 19, 3773-3779(2007).

    [50] Zhang Shuaifeng, Wang Qian, Li Chenyue, et al. Fluorescence enhancement of quantum dots from the titanium dioxide/liquid crystals/polymer composite films[J]. Liquid Crystals, 2, 1-14(2020).

    [51] Yang K P, Yoon C, Um K. Fabrication of quantum dot-polymer nanocomposite using amphiphilic polymer-encapsulation of quantum dots[J]. Journal of the Society for Information Display, 1673-1674(2019).

    [52] Seo J, Cho M J, Lee D, et al. Efficient heterojunction photovoltaic cell utilizing nanocomposites of lead sulfide nanocrystals and a low-bandgap polymer[J]. Advanced Materials, 23, 3984-3988(2011).

    [53] Cha W, Kim H, Lee S, et al. Size-controllable and stable organometallic halide perovskite quantum dots/polymer films[J]. Journal of Materials Chemistry C, 5, 6667-6671(2017).

    [54] Lü Changli, Gao Junfang, Fu Yuqin, et al. A ligand exchange route to highly luminescent surface-functionalized ZnS nanoparticles and their transparent polymer nanocomposites[J]. Advanced Functional Materials, 18, 3070-3079(2008).

    [55] Vega-Mayoral V, Backes C, Hanlon D, et al. Photoluminescence from liquid-exfoliated WS2 monomers in poly(vinyl alcohol) polymer composites[J]. Advanced Functional Materials, 26, 1028-1039(2016).

    [56] Venkatakrishnarao D, Sahoo C, Vattikunta R, et al. 2 D arrangement of polymer microsphere photonic cavities doped with novel N-Rich carbon quantum dots display enhanced one- and two-photon luminescence driven by optical resonances[J]. Advanced Optical Materials, 5, 1700695(2017).

    [57] Tan M C, Patil S D, Riman R E. Transparent infrared-emitting CeF3: Yb-Er polymer nanocomposites for optical applications[J]. ACS Applied Materials & Interfaces, 2, 1884-1891(2010).

    [58] Shahiduzzaman M, Muslih E Y, Hasan A K M, et al. The benefits of ionic liquids for the fabrication of efficient and stable perovskite photovoltaics[J]. Chemical Engineering Journal, 411, 128461(2021).

    [59] Meng Chao, Yu Shaoliang, Wang Hongqing, et al. Graphene-doped polymer nanofibers for low-threshold nonlinear optical waveguiding[J]. Light: Science & Applications, 4, e348(2015).

    [60] Cosgun A, Fu R, Jiang W, et al. Flexible quantum dot–PVA composites for white LEDs[J]. Journal of Materials Chemistry C, 3, 257-264(2015).

    [61] Song S, Shim H, Lim S K, et al. Patternable and widely colour-tunable elastomer-based electroluminescent devices[J]. Scientific Reports, 8, 3331(2018).

    [62] Kim J T, Choi H, Shin E, et al. Graphene-based optical waveguide tactile sensor for dynamic response[J]. Scientific Reports, 8, 16118(2018).

    [63] Li Pengwei, Liang Chao, Zhang Yiqiang, et al. Polyethyleneimine high-energy hydrophilic surface interfacial treatment toward efficient and stable perovskite solar cells[J]. ACS Applied Materials & Interfaces, 8, 32574-32580(2016).

    [64] Ghimire S, Sivadas A, Yuyama K I, et al. Quantum dot-polymer conjugates for stable luminescent displays[J]. Nanoscale, 10, 13368-13374(2018).

    [65] [65] Deukhkar O A, Radhakrishnan S, Munde Y S, et al. Polymer Nanocomposites: Polymer Composites: Design, Manufacturing, Applications[M]. Boca Raton: CRC Press, 2021.

    [66] Varghese A A, Kuriakose E, Jose J, et al. Investigations on the electronic properties and effect of chitosan capping on the structural and optical properties of zinc aluminate quantum dots[J]. Applied Surface Science, 579, 152162(2022).

    [67] Zhang Wei, He Xiwen, Chen Yang, et al. Composite of CdTe quantum dots and molecularly imprinted polymer as a sensing material for cytochrome c[J]. Biosens and Bioelectron, 26, 2553-2558(2011).

    [68] Yin Jinpeng, Yu Jiayao, Shi Xiaorong, et al. TiO2 quantum dots confined in 3 D carbon framework for outstanding surface lithium storage with improved kinetics[J]. Journal of Colloid and Interface Science, 582, 874-882(2021).

    [69] Stoffer J O, Bone T. Polymerization in water-in-oil microemulsion systems. I[J]. Journal of Polymer Science: Polymer Chemistry Edition, 18, 2641-2648(1980).

    [70] Chen Dandan, Yuan Ye, Yu Jiangbo, et al. Purification of semiconducting polymer dots by size exclusion chromatography prior to cytotoxicity assay and stem cell labeling[J]. Analytical Chemistry, 90, 5569-5575(2018).

    [71] Liu Mingxian, Gan Lihua, Pang Yingcong, et al. Synthesis of titania–silica aerogel-like microspheres by a water-in-oil emulsion method via ambient pressure drying and their photocatalytic properties[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 317, 490-495(2008).

    [72] Harun N A, Benning M J, Horrocks B R, et al. Gold nanoparticle-enhanced luminescence of silicon quantum dots co-encapsulated in polymer nanoparticles[J]. Nanoscale, 5, 3817-3827(2013).

    [73] Wei Ziye, Gao Hongzhi, Fu Guoshuai, et al. Construction of GQDs-decorated ultrathin Bi2WO6 nanosheets hydrogel: A recyclable-flexible platform with excellent piezo-photocatalytic activity for high-performance water decontamination and its theoretical interpretation[J]. Particle & Particle Systems Characterization, 38, 2100198(2021).

    [74] Tchernook A, Krumova M, Tölle F J, et al. Composites from aqueous polyethylene nanocrystal/graphene dispersions[J]. Macromolecules, 47, 3017-3021(2014).

    [75] Park J P, Kim T H, Kim S W. Highly stable Cd free quantum dot/polymer composites and their WLED application[J]. Dyes and Pigments, 127, 142-147(2016).

    [76] Mallakpour S, Barati A. Efficient preparation of hybrid nanocomposite coatings based on poly(vinyl alcohol) and silane coupling agent modified TiO2 nanoparticles[J]. Progress in Organic Coatings, 71, 391-398(2011).

    [77] Lin Yue, Jin Jie, Song Mo. Preparation and characterisation of covalent polymer functionalized graphene oxide[J]. Journal of Materials Chemistry, 21, 3455-3461(2011).

    [78] Xu Quan, Kuang Tairong, Liu Yao, et al. Heteroatom-doped carbon dots: Synthesis, characterization, properties, photoluminescence mechanism and biological applications[J]. Journal of Materials Chemistry B, 4, 7204-7219(2016).

    [79] Ye Yun, Yu Jinhui, Lin Shuyan, et al. Progress of quantum dot backlight technology[J]. Chinese Optics, 13, 14-27(2020).

    [80] Chen Zhaoping, Zhao Jialong, Zeng Ruosheng, et al. High efficiency fluorescent perovskite quantum dots encapsulated in superhydrophobic silica aerogel for wide color gamut backlight displays[J]. Chemical Engineering Journal, 433, 133195(2021).

    [81] Zhuge Minghua, Pan Caofeng, Zheng Yazhi, et al. Wavelength‐tunable micro/nanolasers[J]. Advanced Optical Materials, 7, 1900275(2019).

    [82] [82] Sara G R, Íñigo S, Rolindes B, et al. Twophoton pumped rom lasing in a dyedoped silica gel powder [C]SPIE, 2010, 7598: 759804.

    [83] Wang Y, Ta V D, Leck K S, et al. Robust whispering-gallery-mode microbubble lasers from colloidal quantum dots[J]. Nano Letters, 17, 2640-2646(2017).

    [84] Wan Lei, Chen Cong, Zhu Junfeng, et al. Changes in optical characteristics induced by polymer blending in printed colloidal quantum dots microlasers[J]. Optics Express, 27, 19615-19623(2019).

    [85] Chen C J, Lin C C, Lien J Y, et al. Preparation of quantum dot/polymer light conversion films with alleviated Förster resonance energy transfer redshift[J]. Journal of Materials Chemistry C, 3, 196-203(2015).

    [86] Acharya K P, Titov A, Hyvonen J, et al. High efficiency quantum dot light emitting diodes from positive aging[J]. Nanoscale, 9, 14451-14457(2017).

    [87] Li Xiang, Wen Zuoliang, Ding Shihao, et al. Facile in situ fabrication of Cs4PbBr6/CsPbBr3 nanocomposite containing polymer films for ultrawide color gamut displays[J]. Advanced Optical Materials, 8, 2000232(2020).

    [88] Kwak J, Bae W K, Zorn M, et al. Characterization of quantum dot/conducting polymer hybrid films and their application to light-emitting diodes[J]. Advanced Materials, 21, 5022-5026(2009).

    [89] Xuan Tongtong, Huang Junjian, Liu Huan, et al. Super-hydrophobic cesium lead halide perovskite quantum dot-polymer composites with high stability and luminescent efficiency for wide color gamut white light-emitting diodes[J]. Chemistry of Materials, 31, 1042-1047(2019).

    [90] Peng Xiaodong, Yan Cheng, Chun Fengjun, et al. Liquid nitrogen passivation for deep-blue perovskite quantum dots with nearly unit quantum yield[J]. The Journal of Physical Chemistry C, 126, 1017-1025(2022).

    [91] Feng Qibin, Xiao Huili, Yang Ling, et al. Design of optical film for ultra-thin MiniLED backlight modules[J]. Optics and Precision Engineering, 29, 2548-2555(2021).

    [92] Liu Zhaojun, Hyun Byung-Ryool, Sheng Yujia, et al. Micro-light-emitting diodes based on InGaN materials with quantum dots[J]. Advanced Materials Technologies, 2101189(2021).

    [93] Li Chao, Huang Weichun, Gao Lingfeng, et al. Recent advances in solution-processed photodetectors based on inorganic and hybrid photo-active materials[J]. Nanoscale, 12, 2201-2227(2020).

    [94] Chen H Y, Lo M K, Yang G, et al. Nanoparticle-assisted high photoconductive gain in composites of polymer and fullerene[J]. Nature Nanotechnology, 3, 543-547(2008).

    [95] Guo Fawen, Yang Bin, Yuan Yongbo, et al. A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection[J]. Nature Nanotechnology, 7, 798-802(2012).

    [96] Wei Haotong, Fang Yanjun, Yuan Yongbo, et al. Trap engineering of CdTe nanoparticle for high gain, fast response, and low noise P3 HT: CdTe nanocomposite photodetectors[J]. Advanced Materials, 27, 4975-4981(2015).

    [97] Sadasivan S, Bausemer K, Corliss S, et al. 27-1: Invited paper: performance benchmarking of wide color gamut televisions and monitors[J]. SID Symposium Digest of Technical Papers, 47, 333-335(2016).

    CLP Journals

    [1] Kun Hu, Taiwei Zhang, Guobin Li, Xueming Li, Libin Tang, Peizhi Yang. Study on preparation and infrared properties of CoS QDs/PDMS nanocomposite films[J]. Infrared and Laser Engineering, 2023, 52(12): 20230393

    Tools

    Get Citation

    Copy Citation Text

    Xingfan Chen, Bin Li, Xueming Li, Libin Tang. Research advances in optoelectronic devices of quantum dot-polymer nanocomposites[J]. Infrared and Laser Engineering, 2022, 51(5): 20210637

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Optical devices

    Received: Sep. 2, 2021

    Accepted: --

    Published Online: Jun. 14, 2022

    The Author Email: Xueming Li (lxmscience@163.com), Libin Tang (sscitang@163.com)

    DOI:10.3788/IRLA20210637

    Topics