Transactions of Atmospheric Sciences, Volume. 48, Issue 4, 653(2025)

An aircraft observational study on the spectral width of cloud droplet spectra in stratiform clouds over the northeastern Qinghai-Xizang Plateau

WANG Yanfeng, XI Lizong, LIU Ying, PANG Zhaoyun, and LI Baozi
Author Affiliations
  • Gansu Weather Modification Office, Lanzhou 730020, China
  • show less
    References(29)

    [3] [3] Chen J Y, Liu Y G, Zhang M H, et al., 2016. New understanding and quantification of the regime dependence of aerosol-cloud interaction for studying aerosol indirect effects[J]. Geophys Res Lett, 43(4): 1780-1787. DOI: 10.1002/2016GL067683.

    [4] [4] Daum P H, Liu Y, McGraw R L, et al., 2007. Microphysical properties of stratus/stratocumulus clouds during the 2005 marine stratus/stratocumulus experiment (MASE)[R]. Upton, New York: Brookhaven Laboratory: 40.

    [5] [5] Deng Z Z, Zhao C S, Zhang Q, et al., 2009. Statistical analysis of microphysical properties and the parameterization of effective radius of warm clouds in Beijing area[J]. Atmos Res, 93(4): 888-896. DOI: 10.1016/j.atmosres.2009.04.011.

    [7] [7] Geerts B, Yang Y, Rasmussen R, et al., 2015. Snow growth and transport patterns in orographic storms as estimated from airborne vertical-plane dual-Doppler radar data[J]. Mon Wea Rev, 143(2): 644-665. DOI: 10.1175/MWR-D-14-00199.1.

    [9] [9] Guo X H, Lu C S, Zhao T L, et al., 2018. Observational study of the relationship between entrainment rate and relative dispersion in deep convective clouds[J]. Atmos Res, 199: 186-192. DOI: 10.1016/j.atmosres.2017.09.013.

    [10] [10] Hou T J, Lei H C, He Y J, et al., 2021. Aircraft measurements of the microphysical properties of stratiform clouds with embedded convection[J]. Adv Atmos Sci, 38(6): 966-982. DOI: 10.1007/s00376-021-0287-8.

    [15] [15] Lance S, Brock C A, Rogers D, et al., 2010. Water droplet calibration of the Cloud Droplet Probe (CDP) and in-flight performance in liquid, ice and mixed-phase clouds during ARCPAC[J]. Atmos Meas Tech, 3(6): 1683-1706. DOI: 10.5194/amt-3-1683-2010.

    [17] [17] Liu Y G, Daum P H, McGraw R, et al., 2006. Parameterization of the autoconversion process. Part Ⅱ: generalization of sundqvist-type parameterizations[J]. J Atmos Sci, 63(3): 1103-1109. DOI: 10.1175/jas3675.1.

    [18] [18] Liu Y G, Daum P H, Guo H, et al., 2008. Dispersion bias, dispersion effect, and the aerosol-cloud conundrum[J]. Environ Res Lett, 3(4): 045021. DOI: 10.1088/1748-9326/3/4/045021.

    [19] [19] Liu Z K, Wang M H, Rosenfeld D, et al., 2020. Evaluation of cloud and precipitation response to aerosols in WRF-chem with satellite observations[J]. J Geophys Res: Atmos, 125(18): e2020JD033108. DOI: 10.1029/2020JD033108.

    [20] [20] Lu C S, Liu Y G, Niu S J, et al., 2012. Observed impacts of vertical velocity on cloud microphysics and implications for aerosol indirect effects[J]. Geophys Res Lett, 39(21): L21808. DOI: 10.1029/2012GL053599.

    [22] [22] Lu M L, Seinfeld J H, 2006. Effect of aerosol number concentration on cloud droplet dispersion: a large-eddy simulation study and implications for aerosol indirect forcing[J]. J Geophys Res: Atmos, 111(D2): D02207. DOI: 10.1029/2005JD006419.

    [23] [23] Ma J Z, Chen Y, Wang W, et al., 2010. Strong air pollution causes widespread haze-clouds over China[J]. J Geophys Res: Atmos, 115(D18): D18204. DOI: 10.1029/2009JD013065.

    [24] [24] Martin G M, Johnson D W, Spice A, 1994. The measurement and parameterization of effective radius of droplets in warm stratocumulus clouds[J]. J Atmos Sci, 51(13): 1823-1842. DOI: 10.1175/1520-0469(1994)0512.0.co;2.

    [25] [25] Martins J A, Dias M A F, 2009. The impact of smoke from forest fires on the spectral dispersion of cloud droplet size distributions in the Amazonian region[J]. Environ Res Lett, 4(1): 015002. DOI: 10.1088/1748-9326/4/1/015002.

    [26] [26] Pandithurai G, Dipu S, Prabha T V, et al., 2012. Aerosol effect on droplet spectral dispersion in warm continental cumuli[J]. J Geophys Res: Atmos, 117(D16): D16202. DOI: 10.1029/2011JD016532.

    [27] [27] Rotstayn L D, Liu Y G, 2003. Sensitivity of the first indirect aerosol effect to an increase of cloud droplet spectral dispersion with droplet number concentration[J]. J Climate, 16(21): 3476-3481. DOI: 10.1175/1520-0442(2003)0162.0.co;2.

    [29] [29] Saleeby S M, Cotton W R, Fuller J D, 2011. The cumulative impact of cloud droplet nucleating aerosols on orographic snowfall in Colorado[J]. J Appl Meteor Climatol, 50(3): 604-625. DOI: 10.1175/2010jamc2594.1.

    [32] [32] Tas E, Koren I, Altaratz O, 2012. On the sensitivity of droplet size relative dispersion to warm cumulus cloud evolution[J]. Geophys Res Lett, 39(13): L13807. DOI: 10.1029/2012GL052157.

    [33] [33] Tas E, Teller A, Altaratz O, et al., 2015. The relative dispersion of cloud droplets: its robustness with respect to key cloud properties[J]. Atmos Chem Phys, 15(4): 2009-2017. DOI: 10.5194/acp-15-2009-2015.

    [34] [34] Wallace J M, Hobbs P V, 2006. Atmospheric science: an introductory survey[M]. 2nd ed. Amsterdam: Elsevier.

    [37] [37] Wang M Q, Peng Y R, Liu Y G, et al., 2020. Understanding cloud droplet spectral dispersion effect using empirical and semi-analytical parameterizations in NCAR CAM5.3[J]. Earth Space Sci, 7(8): e2020EA001276. DOI: 10.1029/2020EA001276.

    [38] [38] Wang Y, Niu S J, Lu C S, et al., 2019. An observational study on cloud spectral width in North China[J]. Atmosphere, 10(3): 109. DOI: 10.3390/atmos10030109.

    [40] [40] Xie X N, Liu X D, 2011. Effects of spectral dispersion on clouds and precipitation in mesoscale convective systems[J]. J Geophys Res: Atmos, 116(D6): D06202. DOI: 10.1029/2010JD014598.

    [41] [41] Xie X N, Liu X D, Peng Y R, et al., 2013. Numerical simulation of clouds and precipitation depending on different relationships between aerosol and cloud droplet spectral dispersion[J]. Tellus B: Chem Phys Meteor, 65(1): 121-132. DOI: 10.3402/tellusb.v65i0.19054.

    [43] [43] Yang Y, Gao S H, 2020. The impact of turbulent diffusion driven by fog-top cooling on sea fog development[J]. J Geophys Res: Atmos, 125(4): e2019JD031562. DOI: 10.1029/2019JD031562.

    [46] [46] Yum S S, Hudson J G, 2005. Adiabatic predictions and observations of cloud droplet spectral broadness[J]. Atmos Res, 73(3/4): 203-223. DOI: 10.1016/j.atmosres.2004.10.006.

    [48] [48] Zhao C F, Zhao L J, Dong X B, 2019. A case study of stratus cloud properties using in situ aircraft observations over Huanghua, China[J]. Atmosphere, 10(1): 19. DOI: 10.3390/atmos10010019.

    [49] [49] Zhao C S, Tie X X, Brasseur G, et al., 2006. Aircraft measurements of cloud droplet spectral dispersion and implications for indirect aerosol radiative forcing[J]. Geophys Res Lett, 33(16): L16809. DOI: 10.1029/2006GL026653.

    Tools

    Get Citation

    Copy Citation Text

    WANG Yanfeng, XI Lizong, LIU Ying, PANG Zhaoyun, LI Baozi. An aircraft observational study on the spectral width of cloud droplet spectra in stratiform clouds over the northeastern Qinghai-Xizang Plateau[J]. Transactions of Atmospheric Sciences, 2025, 48(4): 653

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Dec. 22, 2023

    Accepted: Aug. 21, 2025

    Published Online: Aug. 21, 2025

    The Author Email:

    DOI:10.13878/j.cnki.dqkxxb.20231222001

    Topics