Laser & Infrared, Volume. 54, Issue 8, 1179(2024)

Research progress of nanosecond visible all-solid-state Raman lasers

WEI Shao-qiang1,2, LI Yun-fei1,2、*, ZHANG Jun-yao1,2, DAI Wei1,2, CHEN Chen1, and WANG Xue-mei1
Author Affiliations
  • 1Research Institute of Physical and Chemical Engineering of Nuclear Industry, Tianjin 300180, China
  • 2National Key Laboratory of Particle Transport and Separation Technology, Tianjin 300180, China
  • show less
    References(54)

    [1] [1] Bayramian A, Bopp R, Borden M, et al. High energy, high average power, DPSSL system for next generation petawattlaser systems[C], 2016 Conference on Lasers and Electro-Optics (CLEO), 2016: 1-2.

    [2] [2] Xu F, Briggs C, Doster J, et al. All diode-pumped 4 Joule 527 nm Nd∶YLF laser for pumping Ti: Sapphire lasers[C]//High-Power, High-Energy, and High-Intensity Laser Technology III. Prague, Czech Republic: SPIE, 2017: 1023805.

    [3] [3] Gottwald T, Stolzenburg C, Bauer D, et al. Recent disk laser development at trumpf[C]. High-Power Lasers, Technology and Systems, 2015, 8547: 85470C.

    [4] [4] Liu H Y, Zhou Z H, Bian Q, et al. High-efficiency nanosecond green laser based on extra-cavity second-harmonic generation of a Nd∶YAG MOPA System[J]. IEEE Photonics Journal, 2023, 15(5): 1502005.

    [5] [5] Yu G L, Ding J Y, Fang C Q, et al. High-stability and high-beam-quality single-frequency nanosecond 589 nm laser based on sum-frequency generation[J]. Optics Communications, 2023, 530: 129184.

    [7] [7] Chandran A M, Runcorn T H, Murray R T, et al. Nanosecond pulsed 620 nm source by frequency-doubling a phosphosilicate Raman fiber amplifier[J]. Optics Letters, 2019, 44(24): 6025-6028.

    [8] [8] Vodchits A I, Busko D N. Multi-frequency quasi-continuous wave solid-state Raman laser for the ultraviolet, visible, and near infrared[J]. Optics Communications, 2007, 272: 467-475.

    [9] [9] He C, ChybaT H. Solid-state barium nitrate raman laser in the visible region[J]. Optics Communications, 1997, 135: 273-278.

    [10] [10] Mildren R P, Convery M, Pask H M, et al. Efficient, all-solid-state, Raman laser in the yellow, orange and red[J]. Optics Express, 2004, 12(5): 785-790.

    [11] [11] Mildren R P, Pask H M, Piper J A, et al. High-efficiency raman converter generation 1.5W of red-orange output[C]//Advanced Solid-State Photonics, 2006, Optical Society of America, 2006.

    [12] [12] Bai Y, Chen X M, Guo J X, et al. Kilohertz high power extracavity KGW yellow Raman lasers based on pulse LD side-pumped ceramic Nd∶YAG[J]. Laser Physics, 2012, 22(3): 535-539.

    [13] [13] Park H M, Piper JA. Practical 580nm source based on frequency doubling of an intracavity-Raman-shifted Nd∶YAG laser[J]. Optics Communications, 1998, 148(4-6): 285-288.

    [14] [14] Park H M, Piper J A. Efficient all-solid-state yellow laser source producing 1.2 W average power[J]. Optics Letters, 1999, 24(21): 1490-1492.

    [15] [15] Kaminskii A A, Ueda K I, Eichler H J, et al. Tetragonal vanadates YVO4 and GdVO4-new efficient (3)-materials for Raman lasers[J]. Optics Communications, 2001, 194(1/2/3): 201-206.

    [16] [16] Hsiao J Q, Huang Y J, Lee C C, et al. Powerful Q-switched Raman laser at 589 nm with a repetition rate between 200 and 500 kHz[J]. Optics Letters, 2021, 46(9): 2063-2066.

    [18] [18] Frey R, Martino A D, Pradere F, et al. High-efficiency pulse compression with intracavity Raman oscillators[J]. Optics Letters, 1983, 8(8): 437-439.

    [19] [19] Murray J T, Austin W L, Powell R C, et al. Intracavity Raman conversion and Raman beam cleanup[J]. Optical Materials, 1999, 11(4): 353-371.

    [20] [20] Duan Y M, Zhou Y M, Zhu H Y, et al. Selective frequency mixing in a cascaded self-Raman laser with a critical phase-matched LBO crystal[J]. Journal of Luminescence, 2022, 70(22): 224209.

    [21] [21] Li S T, Zhang X Y, Wang Q P, et al. Diode-side-pumped intracavity frequency-doubled Nd∶YAG/BaWO4Raman laser generating average output power of 3.14 W at 590 nm[J]. Optics Letters, 2007, 32(20): 2951-2953.

    [22] [22] Zhu H Y, Duan Y M, Zhang G, et al. Yellow-light generation of 5.7 W by intracavity doubling self-Raman laser of YVO4/Nd∶YVO4 composite[J]. Optics Letters, 2009, 34(18): 2763-2765.

    [23] [23] Zhu H Y, Duan Y M, Zhang G, et al. Efficient second harmonic generation of double-end diffusion-bond Nd∶YVO4 self-Raman laser producing 7.9 W yellow light[J]. Optics Express, 2009, 17(24): 21544-21550.

    [24] [24] Zhu H Y, Duan Y M, Zhang G, et al. Yellow-light generation of 5.7 W by intracavity doubling self-Raman laser of YVO4/Nd∶YVO4 composite[J]. Optics Letters, 2009, 34(18): 2763-2765.

    [25] [25] Cong Z H, Zhang X Y, Wang Q P, et al. Theoretical and experimental study on the Nd∶YAG/BaWO4/KTP yellow laser generating 8.3 W output power[J]. Optics Express, 2010, 18(12): 12111-12118.

    [26] [26] Du C L, Guo Y Y, Yu Y Q, et al. High power Q-switched intracavity sum-frequency generation and self-Raman laser at 559 nm[J]. Optics & Laser Technology, 2013, 47: 43- 46.

    [27] [27] Liu Y, Liu Z, Cong Z, et al. Quasi-continuous-wave 589 nm radiation based on intracavity frequency-doubled Nd∶GGG/BaWO4 Raman laser[J]. Optics & Laser Technology, 2016, 81(7): 184-188.

    [28] [28] Guo J, Zhu H Y, Chen S M, et al. Yellow lime and green emission selectable by BBO angle tuning in Q-switched Nd∶YVO4 self-Raman laser[J]. Laser Physics Letters, 2018, 15(7): 075803.

    [29] [29] Chen S M, Cheng M Y, Zhu H Y, et al. Orange yellow and green emissions generated in Q-switched Nd∶YALO3/YVO4 Raman laser[J]. Journal of Luminescence, 2019, 214: 116555.

    [30] [30] Mao T W, Duan Y M, Chen S M, et al. Yellow and orangelight selectable output generated by Nd∶YAP/YVO4/LBO Raman laser[J]. IEEE Photonics Technology Letters, 2019, 31(13): 1112-1115.

    [32] [32] Sun Y L, Duan Y, Zhang L, et al. Second-harmonic generation of Nd∶YAlO3/YVO4 Raman laser optimization for orange emission[J]. Japanese Journal of Applied Physics, 2020, 59: 042004.

    [33] [33] Lv X L, Chen J C, Peng Y J, et al. Discretely tunable multiwavelength visible laser based on cascaded frequency conversion processes[J]. Applied Sciences, 2020, 10(23): 8608.

    [34] [34] Sun B, Ding X, Jiang P B, et al.13.7 W 588 nm yellow laser generation by frequency doubling of 885 nm side-pumped Nd∶YAG-YVO4 intracavity Raman laser[J]. IEEE Photonics J, 2020, 12(2): 1-7.

    [35] [35] Jiang P B, Ni J S, Zhang H W, et al. High-power and high-energy Nd∶YAG-Nd∶YVO4 hybrid gain Raman yellow laser[J]. Opt. Express, 2020, 28(16): 24088-24094.

    [36] [36] Zhang L, DuanY M, Sun Y L, et al. Passively Q-switched multiple visible wavelengths switchable YVO4 Raman laser[J]. Journal of Luminescence, 2020, 228: 117650.

    [37] [37] Chen Y F, Chen K Y, Liu Y C, et al. Criterion for optimizing high-power acousto-optically Q-switched self-Raman yellow lasers with repetition rates up to 500 kHz[J]. Optics Letters, 2020, 45(7): 1922-1925.

    [38] [38] Duan Y M, Sun Y L, Zhu H Y, et al. YVO4 cascaded Raman laser for five-visible-wavelength switchable emission[J]. Optics Letters, 2020, 45(9): 2564-2567.

    [39] [39] Zhao H, Wang H Y, Zhu S Q, et al.578.5 nm end-pumped passively Q-switched Raman yellow laser[J]. Laser & Optoelectronics Progress, 2021, 58(1): 0114004.

    [40] [40] Chen M T, Dai S B, Yin H, et al. Passively Q-switched yellow laser at 589 nm by intracavity frequency-doubled c-cut composite Nd∶YVO4 self-Raman laser[J]. Optics & Laser Technology, 2021, 133: 106534.

    [41] [41] Li Y H, Huang X H, Mao W J, et al. Compact 589 nm yellow source generated by frequency-doubling of passively Q-switched Nd∶YVO4 Raman laser[J]. Microwave and Optical Technology Letters, 2022, 65: 1122-1126.

    [42] [42] Chen H H, Hu W J, Wei X, et al. High beam quality yellow laser at 588 nm by an intracavity frequency-doubled composite Nd∶YVO4 Raman laser[J]. Optics Express, 2023, 31(5): 8494-8502.

    [43] [43] Chen J C, Tu Y C, Ho Y W, et al. Highly efficient diode-pumped passively Q-switched Nd∶YVO4/KGW Raman lasers at yellow and orange wavelengths[J]. Optics Express, 2023, 31(5): 8696-8703.

    [44] [44] Chen J C, Ho Y W, TuY C, et al. High-peak-power passively Q-switched laser at 589 nm with intracavity stimulated Raman scattering[J]. Crystals, 2023, 13(2): 334.

    [46] [46] Granados E, Spence D J, Mildren R P, et al. Deep ultraviolet diamond Raman laser[J]. Optics Express, 2011, 19(11): 10857-10863.

    [47] [47] Mildren R P, Butler J E, Rabeau J R, et al. CVD-diamond external cavity raman laser at 573 nm[J]. Optics Express, 2008, 16(23): 18950-18955.

    [48] [48] Mildren R P, Sabella A. Highly efficient diamond Raman laser[J]. Optics Letters, 2009, 34(18): 2811-2813.

    [49] [49] Antipov S, Sabella A, Williams R J, et al.1.2 kW quasi-steady-state diamond Raman laser pumped by an M2=15 beam[J]. Optics Letters, 2019, 44(10): 2506-2509.

    [50] [50] Kaminskii A A, Ralchenko V G E, Konov V I, et al. Observation of stimulated Raman scattering in CVD-diamond[J]. Journal of Experimental and Theoretical Physics Letters, 2004, 80(4): 267-270.

    [51] [51] Kaminskii A A, Hemley R J, Lai J, et al. High-order stimulated Raman scattering in CVD single crystal diamond[J]. Laser Physics Letters, 2007, 4(5): 350-353.

    [52] [52] Reilly S, Savitski V G, Liu H, et al. Monolithic diamond Raman laser[J]. Optics Letters, 2015, 40(6): 930-933.

    [53] [53] Sean R, Savitski V G, Liu H, et al. Energy scaling of yellow emission from monolithic diamond Raman lasers[C]//2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC), 2017.

    [54] [54] Pashinin V P, Ralchenko V G, Bolshakov A P, et al. Diamond Raman laser emitting at 1194, 1419, and 597 nm[J]. Quantum Electronics, 2018, 48(3): 201-205.

    [55] [55] Tu H, Ma S H, Hu Z G, et al. Efficient monolithic diamond Raman yellow laser at 572.5 nm[J]. Optical Materials, 2021, 114: 110912.

    [56] [56] Ma S H, Tu H, Lu D Z, et al. Efficient Raman red laser with second-order stokes effect of diamond crystal[J]. Optics Communications, 2021, 478: 126399.

    [57] [57] Chen Y L, Liu J, Zhu X L, et al. Intracavity frequency doubled pulsed diamond Raman laser emitting at 620 nm[J]. Applied Physics B, 2022, 128(10): 186.

    [58] [58] Ding J, Gao F, Cai Y P, et al. Order controllable multi-wavelength laser utilizing cascaded diamond Raman conversion[J]. Infrared Physics & Technology, 2023, 136(7): 105042.

    Tools

    Get Citation

    Copy Citation Text

    WEI Shao-qiang, LI Yun-fei, ZHANG Jun-yao, DAI Wei, CHEN Chen, WANG Xue-mei. Research progress of nanosecond visible all-solid-state Raman lasers[J]. Laser & Infrared, 2024, 54(8): 1179

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Dec. 27, 2023

    Accepted: Apr. 30, 2025

    Published Online: Apr. 30, 2025

    The Author Email: LI Yun-fei (liyunfei40@163.com)

    DOI:10.3969/j.issn.1001-5078.2024.08.001

    Topics