Infrared and Laser Engineering, Volume. 51, Issue 1, 20210905(2022)
Research progress on high-performance single-frequency fiber lasers: 2017-2021 (Invited)
[1] Shi W, Fang Q, Zhu X S, et al. Fiber lasers and their applications [Invited][J]. Applied Optics, 53, 6554-6568(2014).
[2] Jeong Y, Nilsson J, Sahu J K, et al. Power scaling of single-frequency ytterbium-doped fiber master-oscillator power-amplifier sources up to 500 W[J]. Journal of Selected Topics in Quantum Electronics, 13, 546-551(2007).
[3] Steinke M, Tünnermann H, Kuhn V, et al. Single-frequency fiber amplifiers for next-generation gravitational wave detectors[J]. Journal of Selected Topics in Quantum Electronics, 24, 1-13(2018).
[4] Fu S J, Shi W, Feng Y, et al. Review of recent progress on single-frequency fiber lasers [Invited][J]. Journal of Optical Society of America B, 34, A49-A62(2017).
[5] Yang Changsheng, Cen Xu, Xu Shanhui, et al. Research progress of single-frequency fiber laser[J]. Acta Optica Sinica, 41, 0114002(2021).
[6] Lai Wenchang, Ma Pengfei, Xiao Hu, et al. High-power narrow-linewidth fiber laser technology[J]. High Power Laser and Particle Beams, 32, 7-28(2020).
[7] Loranger S, Karpov V, Schinn G W, et al. Single-frequency low-threshold linearly polarized DFB Raman fiber lasers[J]. Optics Letters, 42, 3864-3867(2017).
[8] Sun Z H, Jiang X T, Wen Q, et al. Single frequency fiber laser based on an ultrathin metal-organic framework[J]. Journal of Materials Chemistry C, 7, 4662-4666(2019).
[9] Ward J, Benson O. WGM microresonators: sensing, lasing and fundamental optics with microspheres[J]. Laser & Photonics Reviews, 5, 553-570(2011).
[10] Collodo M C, Sedlmeir F, Sprenger B, et al. Sub-kHz lasing of a CaF2 whispering gallery mode resonator stabilized fiber ring laser[J]. Optics Express, 22, 19277-19283(2014).
[11] Shi Wei, Fu Shijie, Fang Qiang, et al. Single-frequency fiber laser based on rare-earth-doped silica fiber[J]. Infrared and Laser Engineering, 45, 1003001(2016).
[12] Sun B, Jia J, Huang J, et al. A 1030 nm single-frequency distributed Bragg reflector Yb-doped silica fiber laser[J]. Laser Physics, 27, 105105(2017).
[13] Boetti N G, Pugliese D, Ceci-Ginistrelli E. Highly doped phosphate glass fibers for compact lasers and amplifiers: A review[J]. Applied Sciences, 7, 1295(2017).
[14] [14] Zhu X S, ChavezPirson A, Milanese D, et al. NonSilica Oxide Glass Fiber Laser Sources: Part II [M]Advances in Glass Science Technology. New Yk: IntechOpen, 2018.
[15] Schülzgen A, Li L, Temyanko V L, et al. Single-frequency fiber oscillator with watt-level output power using photonic crystal phosphate glass fiber[J]. Optics Express, 14, 7087-7092(2006).
[16] Ballato J, Hawkins T, Foy P, et al. On the fabrication of all-glass optical fibers from crystals[J]. Journal of Applied Physics, 105, 053110(2009).
[17] Zhang Y M, Wang W W, Li J, et al. Multi‐component yttrium aluminosilicate (YAS) fiber prepared by melt‐in‐tube method for stable single‐frequency laser[J]. Journal of the American Ceramic Society, 102, 2551-2557(2018).
[18] Liu Z J, Xie Y Y, Cong Z H, et al. 110 mW single-frequency Yb: YAG crystal-derived silica fiber laser at 1064 nm[J]. Optics Letters, 44, 4307-4310(2019).
[19] Wan Y, Wen J X, Jiang C, et al. Over 255 mW single-frequency fiber laser with high slope efficiency and power stability based on an ultrashort Yb-doped crystal-derived silica fiber[J]. Photonics Research, 9, 649-656(2021).
[20] Xie Y Y, Cong Z H, Zhao Z G, et al. Preparation of Er: YAG crystal-derived all-glass silica fibers for a 1550-nm single-frequency laser[J]. Journal of Lightwave Technology, 39, 4769-4775(2021).
[21] Qiu T, Schülzgen A, Li L, et al. Generation of watt-level single longitudinal mode output from cladding pumped short fiber lasers[J]. Optics Letters, 30, 2748-2750(2005).
[22] Guan X C, Yang C S, Qiao T, et al. High-efficiency sub-watt in-band-pumped single-frequency DBR Tm3+-doped germanate fiber laser at 1950 nm[J]. Optics Express, 26, 6817-6825(2018).
[23] Fu S J, Zhu X S, Zong J, et al. Diode-pumped 1.15 W linearly polarized single-frequency Yb3+-doped phosphate fiber laser[J]. Optics Express, 29, 30637-30643(2021).
[24] Zhang J, Sheng Q, Zhang L, et al. 2.56 W single-frequency all-fiber oscillator at 1720 nm[J]. Advanced Photonics Research, 2100256(2021).
[25] Li Y J, Huang L G, Gao L, et al. Optically controlled tunable ultra-narrow linewidth fiber laser with Rayleigh backscattering and saturable absorption ring[J]. Optics Express, 26, 26896-26906(2018).
[26] Shi C D, Sheng Q, Fu S J, et al. Power scaling and spectral linewidth suppression of hybrid Brillouin/thulium fiber laser[J]. Optics Express, 28, 2948-2955(2020).
[27] Ma R L, Yuan S X, Zhu S, et al. Tunable sub-kHz single-mode fiber laser based on a hybrid microbottle resonator[J]. Optics Letters, 43, 5315-5318(2018).
[28] Hao L Y, Wang X H, Jia K P, et al. Narrow-linewidth single-polarization fiber laser using non-polarization optics[J]. Optics Letters, 46, 3769-3772(2021).
[29] Feng T, Wei D, Bi W W, et al. Wavelength-switchable ultra-narrow linewidth fiber laser enabled by a figure-8 compound-ring-cavity filter and a polarization-managed four-channel filter[J]. Optics Express, 29, 31179-31200(2021).
[31] Zhao Q L, Zhang Z T, Wu B, et al. Noise-sidebands-free and ultra-low-RIN 1.5 μm single-frequency fiber laser towards coherent optical detection[J]. Photonics Research, 6, 326-331(2018).
[32] Zhang Q, Hou Y B, Song W H, et al. Pump RIN coupling to frequency noise of a polarization-maintaining 2 µm single frequency fiber laser[J]. Optics Express, 29, 3221-3229(2021).
[33] Yang C S, Guan X C, Lin W, et al. Efficient 1.6 μm linearly-polarized single-frequency phosphate glass fiber laser[J]. Optics Express, 25, 29078-29085(2017).
[34] Fu S J, Zhu X S, Zong J, et al. Single-frequency Nd3+-doped phosphate fiber laser at 915 nm[J]. Journal of Lightwave Technology, 39, 1808-1813(2021).
[35] Shi C D, Fu S J, Shi G N, et al. All-fiberized single-frequency silica fiber laser operating above 2 μm based on SMS fiber devices[J]. Optik, 187, 291-296(2019).
[36] Tao Y, Jiang M, Li C, et al. Low-threshold 1150 nm single-polarization single-frequency Yb-doped DFB fiber laser[J]. Optics Letters, 46, 3705-3708(2021).
[37] Zhang L, Zhang J X, Sheng Q, et al. Watt-level 1.7 μm single-frequency thulium-doped fiber oscillator[J]. Optics Express, 29, 27048-27056(2021).
[38] Hudson D D, Williams R J, Withford M J, et al. Single-frequency fiber laser operating at 2.9 μm[J]. Optics Letters, 38, 2388-2390(2013).
[39] Bernier M, Michaud-Belleau V, Levasseur S, et al. All-fiber DFB laser operating at 2.8 μm[J]. Optics Letters, 40, 81-84(2015).
[40] Zhang L, Cui S Z, Liu C, et al. 170 W, single-frequency, single-mode, linearly-polarized, Yb-doped all-fiber amplifier[J]. Optics Express, 21, 5456-5462(2013).
[41] Kovalev V I, Harrison R G. Suppression of stimulated Brillouin scattering in high-power single-frequency fiber amplifiers[J]. Optics Letters, 31, 161-163(2006).
[42] Theeg T, Sayinc H, Neumann J, et al. All-fiber counter-propagation pumped single frequency amplifier stage with 300-W output power[J]. IEEE Photonics Technology Letters, 24, 1864-1867(2012).
[43] Robin C, Dajani I. Acoustically segmented photonic crystal fiber for single-frequency high-power laser applications[J]. Optics Letters, 36, 2641-2643(2011).
[44] Leigh M, Shi W, Zong J, et al. High peak power single frequency pulses using a short polarization-maintaining phosphate glass fiber with a large core[J]. Applied Physics Letters, 92, 181108(2008).
[45] Robin C, Dajani I, Pulford B, et al. Modal instability-suppressing, single-frequency photonic crystal fiber amplifier with 811 W output power[J]. Optics Letters, 39, 666-669(2014).
[46] [46] Creeden D, Pretius H, Limongelli J, et al. Single frequency 1560 nm Er: Yb fiber amplifier with 207 W output power 50.5% slope efficiency[C]Proc of SPIE, 2016, 9728: 97282L.
[47] Goodno G D, Book L D, Rothenberg J E. Low-phase-noise, single-frequency, single-mode 608 W thulium fiber amplifier[J]. Optics Letters, 34, 1204-1206(2009).
[48] Lai W C, Ma P F, Liu W, et al. 550 W single frequency fiber amplifiers emitting at 1030 nm based on a tapered Yb-doped fiber[J]. Optics Express, 28, 20908-20919(2020).
[49] Shi C D, Fu S J, Xun D, et al. 435 W single-frequency all-fiber amplifier at 1064 nm based on cascaded hybrid active fibers[J]. Optics Communications, 502, 127428(2021).
[50] Guan X C, Yang C S, Gu Q, et al. 316 W high-brightness narrow-linewidth linearly-polarized all-fiber single-frequency laser at 1950 nm[J]. Applied Physics Express, 14, 1112004(2021).
[51] Pulford B, Holten R, Matniyaz T, et al. kW-level monolithic single-mode narrow-linewidth all-solid photonic bandgap fiber amplifier[J]. Optics Letters, 46, 4458-4461(2021).
[52] Xing Z, Wang X, Lou S, et al. Large-mode-area all-solid anti-resonant fiber with single-mode operation for high-power fiber lasers[J]. Optics Letters, 46, 1908-1911(2021).
[53] Zeng L, Pan Z, Xi X, et al. 5 kW monolithic fiber amplifier employing homemade spindle-shaped ytterbium-doped fiber[J]. Optics Letters, 46, 1393-1396(2021).
[54] Ye J, Ma X, Zhang Y, et al. From spectral broadening to recompression: Dynamics of incoherent optical waves propagating in the fiber[J]. PhotoniX, 2, 15(2021).
[55] Zeng X, Cui S, Cheng X, et al. Spectral compression by phase doubling in second harmonic generation[J]. Optics Letters, 47, 222-225(2022).
[56] Varona O D, Fittkau W, Booker P, et al. Single-frequency fiber amplifier at 1.5 μm with 100 W in the linearly-polarized TEM00 mode for next-generation gravitational wave detectors[J]. Optics Express, 25, 24880-24892(2017).
[57] Wellmann F, Steinke M, Meylahn F, et al. High power, single-frequency, monolithic fiber amplifier for the next generation of gravitational wave detectors[J]. Optics Express, 27, 28523-28533(2019).
[58] Yang X, Lei Z, Cui S, et al. Sodium guide star laser pulsed at Larmor frequency[J]. Optics Letters, 42, 4351-4354(2017).
[59] Guan X, Zhao Q, Lin W, et al. High-efficiency and high-power single-frequency fiber laser at 1.6μm based on cascaded energy-transfer pumping[J]. Photonics Research, 8, 414-420(2020).
[60] Benoit P, Méhauté S L, Gout J L, et al. All-fiber laser source at 1645 nm for lidar measurement of methane concentration and wind velocity[J]. Optics Letters, 46, 126-129(2021).
[61] Petersen E, Shi W, Chavez-Pirson A, et al. High peak-power single-frequency pulses using multiple stage, large core phosphate fibers and preshaped pulses[J]. Applied Optics, 51, 531-534(2012).
[62] Fang Q, Shi W, Kieu K, et al. High power and high energy monolithic single frequency 2 μm nanosecond pulsed fiber laser by using large core Tm-doped germanate fibers: experiment and modeling[J]. Optics Express, 20, 16410-16420(2012).
[63] Lee W, Geng J, Jiang S, et al. 1.8 mJ, 3.5 kW single-frequency optical pulses at 1572 nm generated from an all-fiber MOPA system[J]. Optics Letters, 43, 2264-2267(2018).
[64] Kim P, Joona R, Teppo N, et al. Single-frequency 100 ns/0.5 mJ laser pulses from all-fiber double clad ytterbium doped tapered fiber amplifier[J]. Optics Express, 27, 31532-31541(2019).
[65] Khudyakov M, Lipatov D, Guryanov A, et al. Highly efficient 37-kW-peak-power single-frequency combined Er/Er-Yb fiber amplifier[J]. Optics Letters, 45, 1782-1785(2020).
[66] Huang L, Ma P F, Su R T, et al. Comprehensive investigation on the power scaling of a tapered Yb-doped fiber-based monolithic linearly polarized high-peak-power near-transform-limited nanosecond fiber laser[J]. Optics Express, 29, 761-782(2021).
[67] Shi C D, Tian H, Sheng Q, et al. High-power single-frequency pulsed fiber MOPA via SPM suppression based on a triangular pulse[J]. Results in Physics, 28, 104594(2021).
Get Citation
Copy Citation Text
Wei Shi, Shijie Fu, Quan Sheng, Chaodu Shi, Junxiang Zhang, Lu Zhang, Jianquan Yao. Research progress on high-performance single-frequency fiber lasers: 2017-2021 (Invited)[J]. Infrared and Laser Engineering, 2022, 51(1): 20210905
Category: Highlight
Received: Nov. 26, 2021
Accepted: Jan. 7, 2022
Published Online: Mar. 8, 2022
The Author Email: Wei Shi (shiwei@tju.edu.cn), Shijie Fu (shijie_fu@tju.edu.cn)