Acta Laser Biology Sinica, Volume. 29, Issue 3, 245(2020)
Construction of A New Bone Defect Zebrafish Model and in vivo Evaluation of the Repair Process by OCT
[1] [1] CAPLAN A I. Adult mesenchymal stem cells for tissue engineering versus regenerative medicine[J]. Journal of Cellular Physiology, 2007, 213(2): 341-347.
[2] [2] GIMBLE J M, KATZ A J, BUNNELL B A. Adipose-derived stem cells for regenerative medicine[J]. Circulation Research, 2007, 100(9): 1249-1260.
[3] [3] GURTNER G C, WERNER S, BARRANDON Y, et al. Wound repair and regeneration[J]. Nature, 2008, 453(7193): 314-321.
[4] [4] SINGH V K, KALSAN M, KUMAR N, et al. Induced pluripotent stem cells:applications in regenerative medicine, disease modeling, and drug discovery[J]. Frontiers in Cell and Developmental Biology, 2015, 3(2): 1-18.
[5] [5] HONDA A, HIROSE M, HATORI M, et al. Generation of induced pluripotent stem cells in rabbits potential experimental models for human regenerative medicine[J]. Journal of Biological Chemistry, 2010, 285(41): 31362-31369.
[6] [6] MUSCHLER G F, RAUT V P, PATTERSON T E, et al. The design and use of animal models for translational research in bone tissue engineering and regenerative medicine[J]. Tissue Engineering Part B:Reviews, 2010, 16(1): 123-145.
[7] [7] CUMMINGS S R, KELSEY J L, NEVITT M C, et al. Epidemiology of osteoporosis and osteoporotic fractures[J]. Epidemiologic Reviews, 1985, 7(1): 178-208.
[8] [8] JOHNELL O, KANIS J A, ODEN A, et al. Mortality after osteoporotic fractures[J]. Osteoporosis International, 2004, 15(1): 38-42.
[9] [9] BOSCH C, MELSEN B, VARGERVIK K. Importance of the critical-size bone defect in testing bone-regenerating materials[J]. The Journal of Craniofacial Surgery, 1998, 9(4): 310-316.
[10] [10] GOESSLING W, NORTH T E. Repairing quite swimmingly: advances in regenerative medicine using zebrafish[J]. Disease Models & Mechanisms, 2014, 7(7): 769-776.
[11] [11] SANTORIELLO C, ZON L I. Hooked! Modeling human disease in zebrafish[J]. The Journal of Clinical Investigation, 2012, 122(7): 2337-2343.
[12] [12] FANG Wei, ZANG Jing, WANG Fuli, et al. Application of zebrafish as a model organism in the study of human diseases[J]. Medical Information, 2010, 5(2): 337-338.
[13] [13] LIESCHKE G J, CURRIE P D. Animal models of human disease:zebrafish swim into view[J]. Nature Reviews Genetics, 2007, 8(5): 353-367.
[14] [14] STWWART A M, BRAUBACH O, SPITSBERGEN J, et al. Zebrafish models for translational neuroscience research:from tank to bedside[J]. Trends in Neurosciences, 2014, 37(5): 264-278.
[15] [15] BANDMANN O, BURTON E A. Genetic zebrafish models of neurodegenerative diseases[J]. Neurobiology of Disease, 2010, 40(1): 58-65.
[16] [16] WANG Xiaoqi, SUN Yan, ZHANG Yang, et al. Application of zebrafish models in the research on bone diseases[J]. Chinese Journal of Comparative Medicine, 2017, 27(6): 86-91.
[17] [17] BROWN A M, FISHER S, KATHRYN IOVINE M. Osteoblast maturation occurs in overlapping proximal-distal compartments during fin regeneration in zebrafish[J]. Developmental Dynamics:an Official Publication of the American Association of Anatomists, 2009, 238(11): 2922-2928.
[18] [18] DU S J, FRENKEL V, KINDSCHI G, et al. Visualizing normal and defective bone development in zebrafish embryos using the fluorescent chromophore calcein[J]. Developmental Biology, 2001, 238(2): 239-246.
[19] [19] VAKOC B J, FUKUMURA D, JAIN R K, et al. Cancer imaging by optical coherence tomography:preclinical progress and clinical potential[J]. Nature Reviews Cancer, 2012, 12(5): 363-368.
[20] [20] JIANG Yu, YAO Jianquan, WANG Ruikang, et al. Establishment and research of optical coherence tomography[J]. Optical Instruments, 2003, 25(2): 33-37.
[22] [22] ZHANG J, GE W, YUAN Z. In vivo three-dimensional characterization of the adult zebrafish brain using a 1 325 nm spectral domain optical coherence tomography system with the 27 frame/s video rate[J]. Biomedical Optics Express, 2015, 6(10): 3932-3940.
[23] [23] LIN Y, XIANG X, CHEN T, et al. In vivo monitoring and high-resolution characterizing of the prednisolone-induced osteoporotic process on adult zebrafish by optical coherence tomography[J]. Biomedical Optics Express, 2019, 10(3): 1184-1195.
[24] [24] LIN Y, XIANG X, CHEN T, et al. In vivo monitoring the dynamic process of acute retinal hemorrhage and repair in zebrafish with spectral-domain optical coherence tomography[J]. Journal of Biophotonics, 2019, 12(12): e201900235.
[25] [25] GERURTZEN K, VERNET A, FREIDIN A, et al. Immune suppressive and bone inhibitory effects of prednisolone in growing and regenerating zebrafish tissues[J]. Journal of Bone and Mineral Research, 2017, 32(12): 2476-2488.
[26] [26] SUN Nan, CHEN Lin. Use of mouse model to study bone repair[J]. Journal of Clinical and Pathological Research, 2007, 27(3): 271-276.
[27] [27] ZHANG J, ZHANG Z, GE W, et al. Long-term in vivo monitoring of iniury induced brain regeneration of the adult zebrafish by using spectral domain optical coherence tomography[J]. Chinese Optics Letters, 2016, 14(8): 081702-081705.
Get Citation
Copy Citation Text
CHEN Tingru, LIN Yanping, XIE Qingxuan, LAN Yintao, QIU Ting, XIANG Xiang, WANG Limei, ZHANG Jian. Construction of A New Bone Defect Zebrafish Model and in vivo Evaluation of the Repair Process by OCT[J]. Acta Laser Biology Sinica, 2020, 29(3): 245
Category:
Received: Nov. 4, 2019
Accepted: --
Published Online: Aug. 6, 2020
The Author Email: