Acta Photonica Sinica, Volume. 54, Issue 3, 0323002(2025)
Vari-focal Super-resolution Graphene Oxide Metalens Based on Wavelength Modulation
[1] DAI X, DONG F, ZHANG K et al. Holographic super-resolution metalens for achromatic sub-wavelength focusing[J]. ACS Photonics, 8, 2294-2303(2021).
[2] LU X, GUO Y, PU M et al. Broadband achromatic metasurfaces for sub-diffraction focusing in the visible[J]. Optics Express, 29, 5947-5958(2021).
[3] DONG H W, SHEN C, ZHAO S D et al. Achromatic metasurfaces by dispersion customization for ultra-broadband acoustic beam engineering[J]. National Science Review, 9, nwac030(2022).
[4] XIAO X, ZHAO Y, YE X et al. Large-scale achromatic flat lens by light frequency-domain coherence optimization[J]. Light: Science & Applications, 11, 323(2022).
[5] XU Y, GU J, GAO Y et al. Broadband achromatic terahertz metalens constituted by si-sio2-si hybrid meta-atoms[J]. Advanced Functional Materials, 33, 2302821(2023).
[6] YU H, CEN Z, LI X. Broadband achromatic and wide field of view metalens-doublet by inverse design[J]. Optics Express, 32, 15315-15325(2024).
[7] PAHLEVANINEZHAD H, KHORASANINEJAD M, HUANG Y W et al. Nano-optic endoscope for high-resolution optical coherence tomography in vivo[J]. Nature Photonics, 12, 540-547(2018).
[8] CHEN C, SONG W, CHEN J W et al. Spectral tomographic imaging with aplanatic metalens[J]. Light: Science & Applications, 8, 99(2019).
[9] ZHANG J, SUN Q, WANG Z et al. A fully metaoptical zoom lens with a wide range[J]. Nano Letters, 24, 4893-4899(2024).
[10] WEI Y, WANG Y, FENG X et al. Compact optical polarization-insensitive zoom metalens doublet[J]. Advanced Optical Materials, 8, 2000142(2020).
[11] OGAWA C, NAKAMURA S, ASO T et al. Rotational varifocal moiré metalens made of single-crystal silicon meta-atoms for visible wavelengths[J]. Nanophotonics, 11, 1941-1948(2022).
[12] YAN B, CHEN L, LIU Y et al. Broadband varifocal metalens via dielectric spin-decoupled metasurface[J]. Optics Communications, 131062(2024).
[13] LIN P, LIN Y S, LIN J et al. Stretchable metalens with tunable focal length and achromatic characteristics[J]. Results in Physics, 31, 105005(2021).
[14] SHRIMANESH G K, SOKHOYAN R, WU P C et al. Electro-optically tunable multifunctional metasurfaces[J]. ACS Nano, 14, 6912-6920(2020).
[15] FAN C Y, CHUANG T J, WU K H et al. Electrically modulated varifocal metalens combined with twisted nematic liquid crystals[J]. Optics Express, 28, 10609-10617(2020).
[16] ARCHETTI A, LIN R J, RESTORI N et al. Thermally reconfigurable metalens[J]. Nanophotonics, 11, 3969-3980(2022).
[17] SHALAGINOV M Y, AN S, ZHANG Y et al. Reconfigurable all-dielectric metalens with diffraction-limited performance[J]. Nature Communications, 12, 1225(2021).
[18] WANG M, LEE J S, AGGARWAL S et al. Varifocal metalens using tunable and ultralow-loss dielectrics[J]. Advanced Science, 10, 2204899(2023).
[19] HUANG P S, CHU C H, HUANG S H et al. Varifocal metalenses: harnessing polarization-dependent superposition for continuous focal length control[J]. Nano Letters, 23, 10432-10440(2023).
[20] MIN Q, TRAPP J, FANG T et al. Varifocal metalens for compact and accurate quantitative phase imaging[J]. ACS Photonics, 11, 2797-2804(2024).
[21] ZHENG R, PAN R, GENG G et al. Active multiband varifocal metalenses based on orbital angular momentum division multiplexing[J]. Nature Communications, 13, 4292(2022).
[22] HUANG Baoze, ZHAO Fen, LIU Qinxiao et al. Super-resolution wavelength-controlled zoom metalens[J]. Acta Optica Sinica, 43, 2322001(2023).
[23] WANG J, YU R, YE X et al. Quantitative phase imaging with a compact meta-microscope[J]. Npj Nanophotonics, 1, 4(2024).
[24] CAO G, LIN H, FRASER S et al. Resilient graphene ultrathin flat lens in aerospace, chemical, and biological harsh environments[J]. ACS Applied Materials & Interfaces, 11, 20298-20303(2019).
[25] LIN H, STURMBERG B C P, LIN K T et al. A 90-nm-thick graphene metamaterial for strong and extremely broadband absorption of unpolarized light[J]. Nature Photonics, 13, 270-276(2019).
[26] LI X, WEI S, CAO G et al. Graphene metalens for particle nanotracking[J]. Photonics Research, 8, 1316-1322(2020).
[27] WANG H, HAO C, LIN H et al. Generation of super-resolved optical needle and multifocal array using graphene oxide metalenses[J]. Opto-Electronic Advances, 4, 200031(2021).
[28] CAO G, LIN H, JIA B. Broadband diffractive graphene orbital angular momentum metalens by laser nanoprinting[J]. Ultrafast Science, 3, 0018(2023).
[29] CAO G, LIN H, JIA B et al. Design of a dynamic multi-topological charge graphene orbital angular momentum metalens[J]. Optics Express, 31, 2102-2111(2023).
[30] LI X, MENG F, CHEN Y et al. Designer graphene oxide ultrathin flat lens with versatile focusing property[J]. Optics Express, 32, 6531-6539(2024).
[31] CHEN Y, DING Y, YU H et al. Design of an achromatic graphene oxide metalens with multi-wavelength for visible light[J]. Photonics, 11, 249(2024).
[32] ZHENG X, JIA B, LIN H et al. Highly efficient and ultra-broadband graphene oxide ultrathin lenses with three-dimensional subwavelength focusing[J]. Nature Communications, 6, 8433(2015).
[33] WEI S, CAO G, LIN H et al. A varifocal graphene metalens for broadband zoom imaging covering the entire visible region[J]. ACS Nano, 15, 4769-4776(2021).
[34] CAO G, GAN X, LIN H et al. An accurate design of graphene oxide ultrathin flat lens based on Rayleigh-Sommerfeld theory[J]. Opto-Electronic Advances, 1, 180012(2018).
[35] HUANG K, YE H, TENG J et al. Optimization-free superoscillatory lens using phase and amplitude masks[J]. Laser & Photonics Reviews, 8, 152-157(2014).
Get Citation
Copy Citation Text
Yongchang DING, Xueyan LI, Yijian WU, Lieshan ZHANG, Di CHANG. Vari-focal Super-resolution Graphene Oxide Metalens Based on Wavelength Modulation[J]. Acta Photonica Sinica, 2025, 54(3): 0323002
Category: Optical Device
Received: Aug. 12, 2024
Accepted: Oct. 12, 2024
Published Online: Apr. 22, 2025
The Author Email: Xueyan LI (xueyanli8023@zstu.edu.cn), Yijian WU (20180188@wzu.edu.cn)