Optics and Precision Engineering, Volume. 31, Issue 6, 962(2023)
Design of channel attention network and system for micro target measurement
[1] YU H. Image-type displacement measurement resolution improvement without magnification imaging[J]. Measurement Science and Technology, 33(2022).
[2] [2] 2王冬云, 唐楚, 鄂世举, 等. 基于导向滤波Retinex和自适应Canny的图像边缘检测[J]. 光学 精密工程, 2021, 29(2): 443-451. doi: 10.37188/OPE.20212902.0443WANGD Y, TANGCH, E SH J, et al. Image edge detection based on guided filter Retinex and adaptive Canny[J]. Opt. Precision Eng., 2021, 29(2): 443-451.(in Chinese). doi: 10.37188/OPE.20212902.0443
[3] [3] 3刘宇涵, 闫河, 陈早早, 等. 强噪声下自适应Canny算子边缘检测[J]. 光学 精密工程, 2022, 30(3): 350-362. doi: 10.37188/OPE.20223003.0350LIUY H, YANH, CHENZ Z, et al. Adaptive Canny operator edge detection under strong noise[J]. Opt. Precision Eng., 2022, 30(3): 350-362.(in Chinese). doi: 10.37188/OPE.20223003.0350
[4] SHARMA S, VENTURA J, D’AMICO S. Robust model-based monocular pose initialization for noncooperative spacecraft rendezvous[J]. Journal of Spacecraft and Rockets, 55, 1414-1429(2018).
[5] WANG W, LU X N, HE Z Z et al. Using convolutional neural network for intelligent SAM inspection of flip chips[J]. Measurement Science and Technology, 32, 115022(2021).
[6] [6] 6朱福珍, 刘越, 黄鑫, 等. 改进的稀疏表示遥感图像超分辨重建[J]. 光学 精密工程, 2019, 27(3): 718-725. doi: 10.13482/j.issn1001-7011.2019.05.004ZHUF ZH, LIUY, HUANGX, et al. Remote sensing image super-resolution based on improved sparse representation[J]. Opt. Precision Eng., 2019, 27(3): 718-725.(in Chinese). doi: 10.13482/j.issn1001-7011.2019.05.004
[7] [7] 7周涛, 霍兵强, 陆惠玲, 等. 融合多尺度图像的密集神经网络肺部肿瘤识别算法[J]. 光学 精密工程, 2021, 29(7): 1695-1708. doi: 10.37188/OPE.20212907.1695ZHOUT, HUOB Q, LUH L, et al. Lung tumor image recognition algorithm with densenet fusion multi-scale images[J]. Opt. Precision Eng., 2021, 29(7): 1695-1708.(in Chinese). doi: 10.37188/OPE.20212907.1695
[8] THÉVENAZ P, UNSER M. Linear interpolation revitalized[J]. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society, 13, 710-719(2004).
[9] SCHULTZ R R, STEVENSON R L. Extraction of high-resolution frames from video sequences[J]. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society, 5, 996-1011(1996).
[10] [10] 10彭真明, 景亮, 何艳敏, 等. 基于多尺度稀疏字典的多聚焦图像超分辨融合[J]. 光学 精密工程, 2014, 22(1): 169-176. doi: 10.3788/ope.20142201.0169PENGZ M, JINGL, HEY M, et al. Superresolution fusion of multi-focus image based on multiscale sparse dictionary[J]. Opt. Precision Eng., 2014, 22(1): 169-176.(in Chinese). doi: 10.3788/ope.20142201.0169
[11] TANG Y, YUAN Y. Image pair analysis with matrix-value operator[J]. IEEE Transactions on Cybernetics, 45, 2042-2050(2015).
[12] DONG C, LOY C C, HE K M et al. Learning a deep convolutional network for image super-resolution[J]. Computer Vision, 184-199(2014).
[13] DONG C, LOY C C, TANG X O. Accelerating the super-resolution convolutional neural network[J]. Computer Vision, 391-407(2016).
[14] KIM J, LEE J K, LEE K M. Accurate Image Super-Resolution Using Very Deep Convolutional Networks[C], 1646-1654(2016).
[15] HE K M, ZHANG X Y, REN S Q et al. Deep Residual Learning for Image Recognition[C], 770-778(2016).
[16] [16] 16谷雨, 刘俊, 沈宏海, 等. 基于改进多尺度分形特征的红外图像弱小目标检测[J]. 光学 精密工程, 2020, 28(6): 1375-1386. doi: 10.3788/ope.20202806.1375GUY, LIUJ, SHENH H, et al. Infrared dim-small target detection based on an improved multiscale fractal feature[J]. Opt. Precision Eng., 2020, 28(6): 1375-1386.(in Chinese). doi: 10.3788/ope.20202806.1375
[17] SZEGEDY C, LIU W, JIA Y Q et al. Going Deeper with Convolutions[C], 1-9(2015).
[19] HUANG G, LIU Z, VAN DER MAATEN L et al. Densely Connected Convolutional Networks[C], 2261-2269(2017).
[20] CHOI J S, KIM M. A Deep Convolutional Neural Network with Selection Units for Super-Resolution[C], 1150-1156(2017).
[21] KIM H et al. Enhanced Deep Residual Networks for Single Image Super-Resolution[C], 1132-1140(2017).
[22] [22] 22朱威, 王立凯, 靳作宝, 等. 引入注意力机制的轻量级小目标检测网络[J]. 光学 精密工程, 2022, 30(8): 998-1010. doi: 10.37188/OPE.20223008.0998ZHUW, WANGL K, JINZ B, et al. Lightweight small object detection network with attention mechanism[J]. Opt. Precision Eng., 2022, 30(8): 998-1010.(in Chinese). doi: 10.37188/OPE.20223008.0998
[23] [23] 23鞠默然, 罗海波, 刘广琦, 等. 采用空间注意力机制的红外弱小目标检测网络[J]. 光学 精密工程, 2021, 29(4): 843-853. doi: 10.37188/OPE.20212904.0843JUM R, LUOH B, LIUG Q, et al. Infrared dim and small target detection network based on spatial attention mechanism[J]. Opt. Precision Eng., 2021, 29(4): 843-853.(in Chinese). doi: 10.37188/OPE.20212904.0843
[24] SHI W Z, CABALLERO J, HUSZÁR F et al. Real-time Single Image and Video Super-Resolution Using An Efficient Sub-Pixel Convolutional Neural Network[C], 1874-1883(2016).
[25] LUO X T, XIE Y, ZHANG Y L et al. LatticeNet: towards lightweight image super-resolution with lattice block[J]. Computer Vision, 272-289(2020).
Get Citation
Copy Citation Text
Yangwei FU, Jin ZHANG, Zhenxi SUN, Rui ZHANG, Weishi LI, Haojie XIA. Design of channel attention network and system for micro target measurement[J]. Optics and Precision Engineering, 2023, 31(6): 962
Category: Information Sciences
Received: Aug. 2, 2022
Accepted: --
Published Online: Apr. 4, 2023
The Author Email: Jin ZHANG (zhangjin@hfut.edu.cn)