Chinese Journal of Lasers, Volume. 47, Issue 1, 0103001(2020)

Pulsed-Laser-Modified Plasmon Properties of Metal Nanofilms

Wenfeng Sun1, Ruijin Hong1,2、*, Chunxian Tao1,2, and Dawei Zhang1,2
Author Affiliations
  • 1School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology,Shanghai 200093, China
  • 2Engineering Research Center of Optical Instrument and System, Ministry of Education, Shanghai Key Lab of Modern Optical System, Shanghai 200093, China
  • show less
    References(32)

    [1] Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics[J]. Nature, 424, 824-830(2003).

    [2] Ozbay E. Plasmonics: merging photonics and electronics at nanoscale dimensions[J]. Science, 311, 189-193(2006).

    [3] Oh Y, Lee J, Lee M. Fabrication of Ag-Au bimetallic nanoparticles by laser-induced dewetting of bilayer films[J]. Applied Surface Science, 434, 1293-1299(2018).

    [5] Song J B, Huang P, Duan H W et al. Plasmonic vesicles of amphiphilic nanocrystals: optically active multifunctional platform for cancer diagnosis and therapy[J]. Accounts of Chemical Research, 48, 2506-2515(2015).

    [6] Rodrigo D, Limaj O, Janner D et al. Mid-infrared plasmonic biosensing with graphene[J]. Science, 349, 165-168(2015).

    [8] Noguez C. Surface plasmons on metal nanoparticles: the influence of shape and physical environment[J]. The Journal of Physical Chemistry C, 111, 3806-3819(2007).

    [9] Liu Y T, Zhou J, Yuan X C et al. Hydrothermal synthesis of gold polyhedral nanocrystals by varying surfactant concentration and their LSPR and SERS properties[J]. RSC Advances, 5, 68668-68675(2015).

    [10] Vilayurganapathy S, Devaraj A, Colby R et al. Subsurface synthesis and characterization of Ag nanoparticles embedded in MgO[J]. Nanotechnology, 24, 095707(2013).

    [11] Fang Y C, Blinn K, Li X X et al. Strong coupling between Rhodamine 6G and localized surface plasmon resonance of immobile Ag nanoclusters fabricated by direct current sputtering[J]. Applied Physics Letters, 102, 143112(2013).

    [12] McMahon M D, Lopez R, Meyer III H M et al. Rapid tarnishing of silver nanoparticles in ambient laboratory air[J]. Applied Physics B, 80, 915-921(2005).

    [13] Resta V, Siegel J, Bonse J et al. Sharpening the shape distribution of gold nanoparticles by laser irradiation[J]. Journal of Applied Physics, 100, 084311(2006).

    [14] Prevo B G, Esakoff S A, Mikhailovsky A et al. Scalable routes to gold nanoshells with tunable sizes and response to near-infrared pulsed-laser irradiation[J]. Small, 4, 1183-1195(2008).

    [15] Chen C Y, Wang J Y, Tsai F J et al. Fabrication of sphere-like Au nanoparticles on substrate with laser irradiation and their polarized localized surface plasmon behaviors[J]. Optics Express, 17, 14186-14198(2009).

    [16] Hamad S, Podagatlapalli G K, Tewari S P et al. Influence of picosecond multiple/single line ablation on copper nanoparticles fabricated for surface enhanced Raman spectroscopy and photonics applications[J]. Journal of Physics D: Applied Physics, 46, 485501(2013).

    [17] Xia Y N, Halas N J. Shape-controlled synthesis and surface plasmonic properties of metallic nanostructures[J]. MRS Bulletin, 30, 338-348(2005).

    [19] Serna R, Suárez-García A, Afonso N et al. Optical evidence for reactive processes when embedding Cu nanoparticles in Al2O3 by pulsed laser deposition[J]. Nanotechnology, 17, 4588-4593(2006).

    [21] Oh Y, Lee M. Single-pulse transformation of Ag thin film into nanoparticles via laser-induced dewetting[J]. Applied Surface Science, 399, 555-564(2017).

    [22] Henley S J, Carey J D. Silva S R P. Pulsed-laser-induced nanoscale island formation in thin metal-on-oxide films[J]. Physical Review B, 72, 195408(2005).

    [24] Balamurugan B, Maruyama T. Size-modified d bands and associated interband absorption of Ag nanoparticles[J]. Journal of Applied Physics, 102, 034306(2007).

    [25] Ehrenreich H, Philipp H R, Segall B. Optical properties of aluminum[J]. Physical Review, 132, 1918-1928(1963).

    [26] Hong R J, Wang X H, Ji J L et al. ITO induced tunability of surface plasmon resonance of silver thin film[J]. Applied Surface Science, 356, 701-706(2015).

    [27] Nikov R G, Nedyalkov N N, Atanasov P A et al. Characterization of Ag nanostructures fabricated by laser-induced dewetting of thin films[J]. Applied Surface Science, 374, 36-41(2016).

    [29] Rodriguez R D, Sheremet E, Nesterov M et al. Aluminum and copper nanostructures for surface-enhanced Raman spectroscopy: a one-to-one comparison to silver and gold[J]. Sensors and Actuators B: Chemical, 262, 922-927(2018).

    [30] Ding S Y, Yi J, Li J F et al. Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials[J]. Nature Reviews Materials, 1, 16021(2016).

    [31] Moskovits M. Surface roughness and the enhanced intensity of Raman scattering by molecules adsorbed on metals[J]. The Journal of Chemical Physics, 69, 4159-4161(1978).

    Tools

    Get Citation

    Copy Citation Text

    Wenfeng Sun, Ruijin Hong, Chunxian Tao, Dawei Zhang. Pulsed-Laser-Modified Plasmon Properties of Metal Nanofilms[J]. Chinese Journal of Lasers, 2020, 47(1): 0103001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: materials and thin films

    Received: Jul. 22, 2019

    Accepted: Sep. 23, 2019

    Published Online: Jan. 9, 2020

    The Author Email: Ruijin Hong (rjhongcn@163.com)

    DOI:10.3788/CJL202047.0103001

    Topics