Journal of the Chinese Ceramic Society, Volume. 53, Issue 8, 2166(2025)

Ultra-Fast and Precise Regeneration of Electrode Materials from Spent Lithium-Ion Batteries

LIU Hang1, LI Boyue1, HU Xueshan1,2, ZOU Zhi1, and WAN Jiayu1、*
Author Affiliations
  • 1Future Battery Research Center, Global Institute of Future Technology, Shanghai Jiao Tong University, Shanghai 200240, China
  • 2Centre for Ionics University of Malaya, Department of Physics, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
  • show less
    References(114)

    [1] [1] SCHREYER F, LUDERER G, RODRIGUES R, et al. Common but differentiated leadership: Strategies and challenges for carbon neutrality by 2050 across industrialized economies[J]. Environ Res Lett, 2020, 15(11): 114016.

    [2] [2] JIANG J J, YE B, LIU J G. Research on the peak of CO2 emissions in the developing world: Current progress and future prospect[J]. Appl Energy, 2019, 235: 186-203.

    [3] [3] WANG R, WANG Q Z, YAO S L. Evaluation and difference analysis of regional energy efficiency in China under the carbon neutrality targets: Insights from DEA and Theil models[J]. J Environ Manage, 2021, 293: 112958.

    [4] [4] WILLIAMS J H, DEBENEDICTIS A, GHANADAN R, et al. The technology path to deep greenhouse gas emissions cuts by 2050: The pivotal role of electricity[J]. Science, 2012, 335(6064): 53-59.

    [5] [5] HOLECHEK J L, GELI H M E, SAWALHAH M N, et al. A global assessment: Can renewable energy replace fossil fuels by 2050?[J]. Sustainability, 2022, 14(8): 4792.

    [6] [6] ALANNE K, SAARI A. Distributed energy generation and sustainable development[J]. Renew Sustain Energy Rev, 2006, 10(6): 539-558.

    [7] [7] CHOUDHURY S. Review of energy storage system technologies integration to microgrid: Types, control strategies, issues, and future prospects[J]. J Energy Storage, 2022, 48: 103966.

    [8] [8] DUNN B, KAMATH H, TARASCON J M. Electrical energy storage for the grid: A battery of choices[J]. Science, 2011, 334(6058): 928-935.

    [9] [9] ZHU Z X, JIANG T L, ALI M, et al. Rechargeable batteries for grid scale energy storage[J]. Chem Rev, 2022, 122(22): 16610-16751.

    [10] [10] WU F X, MAIER J, YU Y. Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries[J]. Chem Soc Rev, 2020, 49(5): 1569-1614.

    [11] [11] DUAN J, TANG X, DAI H F, et al. Building safe lithium-ion batteries for electric vehicles: A review[J]. Electrochem Energy Rev, 2020, 3(1): 1-42.

    [12] [12] QU X, ZHANG B L, ZHAO J J, et al. Salt-thermal methods for recycling and regenerating spent lithium-ion batteries: A review[J]. Green Chem, 2023, 25(8): 2992-3015.

    [13] [13] MA X T, CHEN M Y, ZHENG Z F, et al. Recycled cathode materials enabled superior performance for lithium-ion batteries[J]. Joule, 2021, 5(11): 2955-2970.

    [14] [14] HARPER G, SOMMERVILLE R, KENDRICK E, et al. Recycling lithium-ion batteries from electric vehicles[J]. Nature, 2019, 575(7781): 75-86.

    [15] [15] ZHOU J H, ZHOU X, YU W H, et al. Towards greener recycling: Direct repair of cathode materials in spent lithium-ion batteries[J]. Electrochem Energy Rev, 2024, 7(1): 13.

    [16] [16] WANG J X, MA J, ZHUANG Z F, et al. Toward direct regeneration of spent lithium-ion batteries: A next-generation recycling method[J]. Chem Rev, 2024, 124(5): 2839-2887.

    [17] [17] FAN E S, LI L, WANG Z P, et al. Sustainable recycling technology for Li-ion batteries and beyond: Challenges and future prospects[J]. Chem Rev, 2020, 120(14): 7020-7063.

    [18] [18] JENA K K, ALFANTAZI A, MAYYAS A T. Comprehensive review on concept and recycling evolution of lithium-ion batteries (LIBs)[J]. Energy Fuels, 2021, 35(22): 18257-18284.

    [19] [19] XU P P, TAN D H S, JIAO B L, et al. A materials perspective on direct recycling of lithium-ion batteries: Principles, challenges and opportunities[J]. Adv Funct Materials, 2023, 33(14): 2213168.

    [20] [20] YU L, BAI Y C, BELHAROUAK I. Recycling of lithium-ion batteriesviaelectrochemical recovery: A mini-review[J]. Batteries, 2024, 10(10): 337.

    [21] [21] WU X X, JI G J, WANG J X, et al. Toward sustainable all solid-state Li-metal batteries: Perspectives on battery technology and recycling processes[J]. Adv Mater, 2023, 35(51): e2301540.

    [22] [22] HUANG G H, LENG Y, YIN Y C, et al. Perspectives on ultrafast, precise synthesis and regeneration of advanced battery materials[J]. Energy Fuels, 2024, 38(15): 13722-13736.

    [23] [23] WANG C W, PING W W, BAI Q, et al. A general method to synthesize and sinter bulk ceramics in seconds[J]. Science, 2020, 368(6490): 521-526.

    [24] [24] SONG J Y, KIM C, KIM M, et al. Generation of high-density nanoparticles in the carbothermal shock method[J]. Sci Adv, 2021, 7(48): eabk2984.

    [25] [25] ZHU W, ZHANG J C, LUO J W, et al. Ultrafast non-equilibrium synthesis of cathode materials for Li-ion batteries[J]. Adv Mater, 2023, 35(2): e2208974.

    [26] [26] HU X S, ZUO D X, CHENG S R, et al. Ultrafast materials synthesis and manufacturing techniques for emerging energy and environmental applications[J]. Chem Soc Rev, 2023, 52(3): 1103-1128.

    [27] [27] VETTER J, NOVK P, WAGNER M R, et al. Ageing mechanisms in lithium-ion batteries[J]. J Power Sources, 2005, 147(1-2): 269-281.

    [28] [28] HAN X B, LU L G, ZHENG Y J, et al. A review on the key issues of the lithium ion battery degradation among the whole life cycle[J]. eTransportation, 2019, 1: 100005.

    [29] [29] EDGE J S, O’KANE S, PROSSER R, et al. Lithium ion battery degradation: What you need to know[J]. Phys Chem Chem Phys, 2021, 23(14): 8200-8221.

    [30] [30] YE H, ZHANG Y, YIN Y X, et al. An outlook on low-volume-change lithium metal anodes for long-life batteries[J]. ACS Cent Sci, 2020, 6(5): 661-671.

    [31] [31] JIANG M, DANILOV D L, EICHEL R A, et al. A review of degradation mechanisms and recent achievements for Ni-rich cathode-based Li-ion batteries[J]. Adv Energy Mater, 2021, 11(48): 2103005.

    [32] [32] BIRKL C R, ROBERTS M R, MCTURK E, et al. Degradation diagnostics for lithium ion cells[J]. J Power Sources, 2017, 341: 373-386.

    [33] [33] KIM J H, WOO S C, PARK M S, et al. Capacity fading mechanism of LiFePO4-based lithium secondary batteries for stationary energy storage[J]. J Power Sources, 2013, 229: 190-197.

    [34] [34] NIE H H, XU L, SONG D W, et al. LiCoO2: Recycling from spent batteries and regeneration with solid state synthesis[J]. Green Chem, 2015, 17(2): 1276-1280.

    [35] [35] SHI Y, CHEN G, CHEN Z. Effective regeneration of LiCoO2 from spent lithium-ion batteries: A direct approach towards high- performance active particles[J]. Green Chem, 2018, 20(4): 851-862.

    [36] [36] LIANG Q, YUE H F, WANG S F, et al. Recycling and crystal regeneration of commercial used LiFePO4 cathode materials[J]. Electrochim Acta, 2020, 330: 135323.

    [37] [37] JI G J, WANG J X, LIANG Z, et al. Direct regeneration of degraded lithium-ion battery cathodes with a multifunctional organic lithium salt[J]. Nat Commun, 2023, 14(1): 584.

    [38] [38] YANG X, ZHANG Y J, XIAO J, et al. Restoring surface defect crystal of Li-lacking LiNi0.6Co0.2Mn0.2O2 material particles toward more efficient recycling of lithium-ion batteries[J]. ACS Sustainable Chem Eng, 2021, 9(50): 16997-17006.

    [39] [39] FAN M, CHANG X, GUO Y J, et al. Increased residual lithium compounds guided design for green recycling of spent lithium-ion cathodes[J]. Energy Environ Sci, 2021, 14(3): 1461-1468.

    [40] [40] HUO H Y, LUO J, THANGADURAI V, et al. Li2CO3: A critical issue for developing solid garnet batteries[J]. ACS Energy Lett, 2020, 5(1): 252-262.

    [41] [41] CHI Z X, LI J, WANG L H, et al. Direct regeneration method of spent LiNi1/3Co1/3Mn1/3O2 cathode materialsviasurface lithium residues[J]. Green Chem, 2021, 23(22): 9099-9108.

    [42] [42] WU J W, LIN J, FAN E S, et al. Sustainable regeneration of high-performance Li1-xNaxCoO2 from cathode materials in spent lithium-ion batteries[J]. ACS Appl Energy Mater, 2021, 4(3): 2607-2615.

    [43] [43] ZHOU S Y, FEI Z T, MENG Q, et al. Collaborative regeneration of structural evolution for high-performance of LiCoO2 materials from spent lithium-ion batteries[J]. ACS Appl Energy Mater, 2021, 4(11): 12677-12687.

    [44] [44] XU P P, YANG Z Z, YU X L, et al. Design and optimization of the direct recycling of spent Li-ion battery cathode materials[J]. ACS Sustainable Chem Eng, 2021, 9(12): 4543-4553.

    [45] [45] XU P P, DAI Q, GAO H P, et al. Efficient direct recycling of lithium-ion battery cathodes by targeted healing[J]. Joule, 2020, 4(12): 2609-2626.

    [46] [46] JING Q K, ZHANG J L, LIU Y B, et al. Direct regeneration of spent LiFePO4 cathode material by a green and efficient one-step hydrothermal method[J]. ACS Sustainable Chem Eng, 2020, 8(48): 17622-17628.

    [47] [47] ZHANG L G, XU Z M, HE Z. Electrochemical relithiation for direct regeneration of LiCoO2 materials from spent lithium-ion battery electrodes[J]. ACS Sustainable Chem Eng, 2020, 8(31): 11596-11605.

    [48] [48] WANG T, YU X S, FAN M, et al. Direct regeneration of spent LiFePO4viaa graphite prelithiation strategy[J]. Chem Commun, 2019, 56(2): 245-248.

    [49] [49] YANG H M, DENG B W, JING X Y, et al. Direct recovery of degraded LiCoO2 cathode material from spent lithium-ion batteries: Efficient impurity removal toward practical applications[J]. Waste Manag, 2021, 129: 85-94.

    [50] [50] YANG J, WANG W Y, YANG H M, et al. One-pot compositional and structural regeneration of degraded LiCoO2 for directly reusing it as a high-performance lithium-ion battery cathode[J]. Green Chem, 2020, 22(19): 6489-6496.

    [51] [51] QIN Z Y, WEN Z X, XU Y F, et al. A ternary molten salt approach for direct regeneration of LiNi0.5Co0.2Mn0.3O2 cathode[J]. Small, 2022, 18(43): e2106719.

    [52] [52] MA J, WANG J X, JIA K, et al. Adaptable eutectic salt for the direct recycling of highly degraded layer cathodes[J]. J Am Chem Soc, 2022, 144(44): 20306-20314.

    [53] [53] JI H C, WANG J X, QU H T, et al. Closed-loop direct upcycling of spent Ni-rich layered cathodes into high-voltage cathode materials[J]. Adv Mater, 2024, 36(36): e2407029.

    [54] [54] GANTER M J, LANDI B J, BABBITT C W, et al. Cathode refunctionalization as a lithium ion battery recycling alternative[J]. J Power Sources, 2014, 256: 274-280.

    [55] [55] YANG D, FANG Z, JI Y S, et al. A room-temperature lithium- restocking strategy for the direct reuse of degraded LiFePO4 electrodes[J]. Angew Chem Int Ed, 2024, 63(49): e202409929.

    [56] [56] WANG J X, JI H C, LI J F, et al. Direct recycling of spent cathode material at ambient conditionsviaspontaneous lithiation[J]. Nat Sustain, 2024, 7: 1283-1293.

    [57] [57] XU M L, WU C, YE L, et al. Direct regeneration of spent LiCoO2 black mass based on fluorenone-mediated lithium supplementation and energy-saving structural restoration[J]. Adv Energy Mater, 2024, 14(26): 2401197.

    [58] [58] SHI R Y, ZHENG N Z, JI H C, et al. Homogeneous repair of highly degraded Ni-rich cathode material with spent lithium anode[J]. Adv Mater, 2024, 36(13): e2311553.

    [59] [59] WANG T, LUO H M, BAI Y C, et al. Direct recycling of spent NCM cathodes through ionothermal lithiation[J]. Adv Energy Mater, 2020, 10(30): 2001204.

    [60] [60] SU X, WU Q L, LI J C, et al. Silicon-based nanomaterials for lithium-ion batteries: A review[J]. Adv Energy Mater, 2014, 4(1): 1300882.

    [61] [61] XIAO X C, ZHOU W D, KIM Y, et al. Regulated breathing effect of silicon negative electrode for dramatically enhanced performance of Li-ion battery[J]. Adv Funct Mater, 2015, 25(9): 1426-1433.

    [62] [62] LIU W, LI H J, JIN J L, et al. Synergy of epoxy chemical tethers and defect-free graphene in enabling stable lithium cycling of silicon nanoparticles[J]. Angew Chem Int Ed, 2019, 58(46): 16590-16600.

    [63] [63] QIAO Y, ZHAO H P, SHEN Y L, et al. Recycling of graphite anode from spent lithium-ion batteries: Advances and perspectives[J]. EcoMat, 2023, 5(4): e12321.

    [64] [64] AGUBRA V, FERGUS J. Lithium ion battery anode aging mechanisms[J]. Materials, 2013, 6(4): 1310-1325.

    [65] [65] LI C, LIANG Z Y, LI Z Z, et al. Self-assembly monolayer inspired stable artificial solid electrolyte interphase design for next-generation lithium metal batteries[J]. Nano Lett, 2023, 23(9): 4014-4022.

    [66] [66] YANG L, MU Y B, ZOU L F, et al.In situformation of stable dual-layer solid electrolyte interphase for enhanced stability and cycle life in all-solid-state lithium metal batteries[J]. Nano Lett, 2024, 24(42): 13162-13171.

    [67] [67] PALACN M R, DE GUIBERT A. Why do batteries fail?[J]. Science, 2016, 351(6273): 1253292.

    [68] [68] KOLESNIKOV A, KOLEK M, DOHMANN J F, et al. Galvanic corrosion of lithium-powder-based electrodes[J]. Adv Energy Mater, 2020, 10(15): 2000017.

    [69] [69] GUO Y, LI F, ZHU H C, et al. Leaching lithium from the anode electrode materials of spent lithium-ion batteries by hydrochloric acid (HCl)[J]. Waste Manag, 2016, 51: 227-233.

    [70] [70] SABISCH J E C, ANAPOLSKY A, LIU G, et al. Evaluation of using pre-lithiated graphite from recycled Li-ion batteries for new LiB anodes[J]. Resour Conserv Recycl, 2018, 129: 129-134.

    [71] [71] DONG Q, YAO Y G, CHENG S C, et al. Programmable heating and quenching for efficient thermochemical synthesis[J]. Nature, 2022, 605: 470-476.

    [72] [72] YAO Y G, HUANG Z N, XIE P F, et al. Carbothermal shock synthesis of high-entropy-alloy nanoparticles[J]. Science, 2018, 359(6383): 1489-1494.

    [73] [73] ZUO D X, YANG L, ZOU Z Y, et al. Ultrafast synthesis of NASICON solid electrolytes for sodium-metal batteries[J]. Adv Energy Mater, 2023, 13(37): 2301540.

    [74] [74] QIAO Y, CHEN C J, LIU Y, et al. Continuous fly-through high-temperature synthesis of nanocatalysts[J]. Nano Lett, 2021, 21(11): 4517-4523.

    [75] [75] MALINAUSKAS M, UKAUSKAS A, HASEGAWA S, et al. Ultrafast laser processing of materials: From science to industry[J]. Light Sci Appl, 2016, 5(8): e16133.

    [76] [76] ZENG H B, DU X W, SINGH S C, et al. Nanomaterialsvialaser ablation/irradiation in liquid: A review[J]. Adv Funct Mater, 2012, 22(7): 1333-1353.

    [77] [77] PENG Y D, CAO J Y, SHA Y, et al. Laser solid-phase synthesis of single-atom catalysts[J]. Light Sci Appl, 2021, 10(1): 168.

    [78] [78] CHEN W Y, SALVATIERRA R V, REN M Q, et al. Laser-induced silicon oxide for anode-free lithium metal batteries[J]. Adv Mater, 2020, 32(33): e2002850.

    [79] [79] KUMAR A, KUANG Y, LIANG Z, et al. Microwave chemistry, recent advancements, and eco-friendly microwave-assisted synthesis of nanoarchitectures and their applications: A review[J]. Mater Today Nano, 2020, 11: 100076.

    [80] [80] QIAO H Y, SARAY M T, WANG X Z, et al. Scalable synthesis of high entropy alloy nanoparticles by microwave heating[J]. ACS Nano, 2021, 15(9): 14928-14937.

    [81] [81] CHEN S J, NIE L, HU X C, et al. Ultrafast sintering for ceramic-based all-solid-state lithium-metal batteries[J]. Adv Mater, 2022, 34(33): 2200430.

    [82] [82] CHEN Q, MA T T, WANG F F, et al. Rapid microwave-annealing process of hybrid perovskites to eliminate miscellaneous phase for high performance photovoltaics[J]. Adv Sci, 2020, 7(12): 2000480.

    [83] [83] MEIERHOFER F, FRITSCHING U. Synthesis of metal oxide nanoparticles in flame sprays: Review on process technology, modeling, and diagnostics[J]. Energy Fuels, 2021, 35(7): 5495-5537.

    [84] [84] ZHANG J N, MULDOON V L, DENG S L. Accelerated synthesis of Li(Ni0.8Co0.1Mn0.1)O2 cathode materials using flame-assisted spray pyrolysis and additives[J]. J Power Sources, 2022, 528: 231244.

    [85] [85] SELLMANN J, WOLLNY P, BAIK S J, et al. LES of nanoparticle synthesis in the spraysyn burner: A comparison against experiments[J]. Powder Technol, 2022, 404: 117466.

    [86] [86] CHEN G J, CHEN Z T, WEN D, et al. Transdermal cold atmospheric plasma-mediated immune checkpoint blockade therapy[J]. Proc Natl Acad Sci USA, 2020, 117(7): 3687-3692.

    [87] [87] SNCHEZ S, HUA X, GNZLER A, et al. Flash infrared pulse time control of perovskite crystal nucleation and growth from solution[J]. Cryst Growth Des, 2020, 20(2): 670-679.

    [88] [88] NIETHER C, FAURE S, BORDET A, et al. Improved water electrolysis using magnetic heating of FeC-Ni core-shell nanoparticles[J]. Nat Energy, 2018, 3: 476-483.

    [89] [89] KIM D H, CHA J H, SHIM G, et al. Flash-thermochemical engineering of phase and surface activity on metal oxides[J]. Chem, 2022, 8(4): 1014-1033.

    [90] [90] CHUNG W H, PARK S H, JOO S J, et al. UV-assisted flash light welding process to fabricate silver nanowire/graphene on a PET substrate for transparent electrodes[J]. Nano Res, 2018, 11(4): 2190-2203.

    [91] [91] CHOI C H ', SHIN J, EDDY L, et al. Flash-within-flash synthesis of gram-scale solid-state materials[J]. Nat Chem, 2024, 16(11): 1831-1837.

    [92] [92] DENG B, WANG Z, CHEN W Y, et al. Phase controlled synthesis of transition metal carbide nanocrystals by ultrafast flash Joule heating[J]. Nat Commun, 2022, 13(1): 262.

    [93] [93] FENG Y T, YANG L, YAN Z H, et al. Discovery of high entropy garnet solid-state electrolytesviaultrafast synthesis[J]. Energy Storage Mater, 2023, 63: 103053.

    [94] [94] ZHENG X L, GAO X, VIL R A, et al. Hydrogen-substituted graphdiyne-assisted ultrafast sparking synthesis of metastable nanomaterials[J]. Nat Nanotechnol, 2023, 18(2): 153-159.

    [95] [95] SONG Z J, LIU Y H, GUO Z X, et al. Ultrafast synthesis of large-sized and conductive Na3V2(PO4)2F3 simultaneously approaches high tap density, rate and cycling capability[J]. Adv Funct Mater, 2024, 34(18): 2313998.

    [96] [96] BAI J M, SUN W H, ZHAO J Q, et al. Kinetic pathways templated by low-temperature intermediates during solid-state synthesis of layered oxides[J]. Chem Mater, 2020, 32(23): 9906-9913.

    [97] [97] YIN Y C, LI C, HU X S, et al. Rapid, direct regeneration of spent LiCoO2 cathodes for Li-ion batteries[J]. ACS Energy Lett, 2023, 8(7): 3005-3012.

    [98] [98] HU X S, YIN Y C, LI C, et al. Microwave-accelerated direct regeneration of LiCoO2 cathodes for Li-ion batteries[J]. Sci China Chem, 2024, 67(7): 2181-2189.

    [99] [99] ZHENG S H, WANG X T, GU Z Y, et al. Direct and rapid regeneration of spent LiFePO4 cathodesviaa high-temperature shock strategy[J]. J Power Sources, 2023, 587: 233697.

    [100] [100] CHEN W Y, CHENG Y, CHEN J H, et al. Nondestructive flash cathode recycling[J]. Nat Commun, 2024, 15(1): 6250.

    [101] [101] GUO Y Q, YAO Y G, GUO C, et al. Atomistic observation and transient reordering of antisite Li/Fe defects toward sustainable LiFePO4[J]. Energy Environ Sci, 2024, 17(20): 7749-7761.

    [102] [102] LI T Y, TAO L, XU L, et al. Direct and rapid high-temperature upcycling of degraded graphite[J]. Adv Funct Mater, 2023, 33(43): 2302951.

    [103] [103] JI Y S, ZHANG H, YANG D, et al. Regenerated graphite electrodes with reconstructed solid electrolyte interface and enclosed active lithium toward >100% initial coulombic efficiency[J]. Adv Mater, 2024, 36(19): e2312548.

    [104] [104] SHAN M H, XU S C, CAO Y T, et al. Rapid regeneration of graphite anodesviaself-induced microwave plasma[J]. Adv Funct Mater, 2024, 34(48): 2411834.

    [105] [105] CHEN W Y, SALVATIERRA R V, LI J T, et al. Flash recycling of graphite anodes[J]. Adv Mater, 2023, 35(8): e2207303.

    [106] [106] CHEN Y N, LI Y J, WANG Y B, et al. Rapid,in situsynthesis of high capacity battery anodes through high temperature radiation- based thermal shock[J]. Nano Lett, 2016, 16(9): 5553-5558.

    [107] [107] EDDY L, LUONG D X, BECKHAM J L, et al. Automated laboratory kilogram-scale graphene production from coal[J]. Small Methods, 2024, 8(3): e2301144.

    [108] [108] YIN Y C, LI Y, HU X S, et al. Ultrafast,in situtransformation of a protective layer on lithium-rich manganese-based layered oxides for high-performance Li-ion batteries[J]. Green Chem, 2024, 26(17): 9346-9356.

    [109] [109] SHEN Z H, LIU H X, SHEN Y, et al. Machine learning in energy storage materials[J]. Interdiscip Mater, 2022, 1(2): 175-195.

    [110] [110] XU L, TANG S, CHENG Y, et al. Interfaces in solid-state lithium batteries[J]. Joule, 2018, 2(10): 1991-2015.

    [111] [111] LI J, ZHOU M S, WU H H, et al. Machine learning-assisted property prediction of solid-state electrolyte[J]. Adv Energy Mater, 2024, 14(20): 2304480.

    [112] [112] GUO N L, CHEN S H, TAO J, et al. Semi-supervised learning for explainable few-shot battery lifetime prediction[J]. Joule, 2024, 8(6): 1820-1836.

    [113] [113] ZHAO S, CHEN S H, ZHOU J Y, et al. Potential to transform words to Watts with large language models in battery research[J]. Cell Rep Phys Sci, 2024, 5(3): 101844.

    [114] [114] ZHANG Q, SOHAM D, LIANG Z, et al. Advances in wearable energy storage and harvesting systems[J]. Med-X, 2025, 3(1): 3

    Tools

    Get Citation

    Copy Citation Text

    LIU Hang, LI Boyue, HU Xueshan, ZOU Zhi, WAN Jiayu. Ultra-Fast and Precise Regeneration of Electrode Materials from Spent Lithium-Ion Batteries[J]. Journal of the Chinese Ceramic Society, 2025, 53(8): 2166

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Special Issue:

    Received: Dec. 25, 2024

    Accepted: Sep. 5, 2025

    Published Online: Sep. 5, 2025

    The Author Email: WAN Jiayu (wanjy@sjtu.edu.cn)

    DOI:10.14062/j.issn.0454-5648.20240825

    Topics