Acta Photonica Sinica, Volume. 53, Issue 5, 0553108(2024)
Optical Microcavity Magnetic Sensors(Invited)
[1] ZHAO N, HONERT J, SCHMID B et al. Sensing single remote nuclear spins[J]. Nature Nanotechnology, 7, 657-662(2012).
[2] DELORD T, HUILLERY P, NICOLAS L et al. Spin-cooling of the motion of a trapped diamond[J]. Nature, 580, 56-59(2020).
[3] KAVIANI H, GHOBADI R, BEHERA B et al. Optomechanical detection of light with orbital angular momentum[J]. Optics Express, 28, 15482-15496(2020).
[4] SAFRONOVA M S, BUDKER D, DEMILLE D et al. Search for new physics with atoms and molecules[J]. Reviews of Modern Physics, 90, 025008(2018).
[5] XIA H, BEN-AMAR BARANGA A, HOFFMAN D et al. Magnetoencephalography with an atomic magnetometer[J]. Applied Physics Letters, 89, 211104(2006).
[6] PIZZO F, ROEHRI N, MEDINA VILLALON S et al. Deep brain activities can be detected with magnetoencephalography[J]. Nature Communications, 10, 971(2019).
[7] BOTO E, HOLMES N, LEGGETT J et al. Moving magnetoencephalography towards real-world applications with a wearable system[J]. Nature, 555, 657-661(2018).
[8] XIAO W, SUN C, SHEN L et al. A movable unshielded magnetocardiography system[J]. Science Advances, 9, 1746(2023).
[9] RIPKA P, JANOSEK M. Advances in magnetic field sensors[J]. IEEE Sensors Journal, 10, 1108-1116(2010).
[10] LI Y, QIAO Y, TONG Z et al. Nondestructive inspection and imaging of magnetic hydrogel using the alternating magnetic field infrared thermography[J]. Infrared Physics & Technology, 131, 104681(2023).
[11] EDELSTEIN A. Advances in magnetometry[J]. Journal of Physics: Condensed Matter, 19, 165217(2007).
[12] KHAJEH AMIRI HAGH A, ASHTIANI S J, SHAYEGANI AKMAL A A. A wideband, sensitive current sensor employing transimpedance amplifier as interface to Rogowski coil[J]. Sensors and Actuators A: Physical, 256, 43-50(2017).
[13] LOPEZ J D, DANTE A, CREMONEZI A O et al. Fiber-optic current sensor based on FBG and terfenol-D with magnetic flux concentration for enhanced sensitivity and linearity[J]. IEEE Sensors Journal, 20, 3572-3578(2020).
[14] CHEN G Y, NEWSON T P. Detection bandwidth of fibre-optic current sensors based on Faraday effect[J]. Electronics Letters, 50, 626-627(2014).
[15] XIN E, YUAN H. Development of a sensor for corona current measurement under high-voltage direct-current transmission lines[J]. International Journal of Distributed Sensor Networks, 12, 1550147716664243(2016).
[16] YUAN H, YANG Q, LIU Y et al. Development and application of high-frequency sensor for corona current measurement under ultra high-voltage direct-current environment[J]. IEEE Transactions on Instrumentation and Measurement, 61, 1064-1071(2012).
[17] FORSTNER S, PRAMS S, KNITTEL J et al. Cavity optomechanical magnetometer[J]. Physical Review Letters, 108, 120801(2012).
[18] DONG C H, SHEN Z, ZOU C L et al. Brillouin-scattering-induced transparency and non-reciprocal light storage[J]. Nature Communications, 6, 6193(2015).
[19] ZHANG X, CAO Q T, WANG Z et al. Symmetry-breaking-induced nonlinear optics at a microcavity surface[J]. Nature Photonics, 13, 21-24(2019).
[20] SHEN Z, ZHANG Y L, CHEN Y et al. Experimental realization of optomechanically induced non-reciprocity[J]. Nature Photonics, 10, 657-661(2016).
[21] SHEN Z, XU G T, ZHANG M et al. Coherent coupling between phonons, magnons, and photons[J]. Physical Review Letters, 129, 243601(2022).
[22] SHEN Z, ZHANG Y L, ZOU C L et al. Dissipatively controlled optomechanical interaction via cascaded photon-phonon coupling[J]. Physical Review Letters, 126, 163604(2021).
[23] LI B B, OU L, LEI Y et al. Cavity optomechanical sensing[J]. Nanophotonics, 10, 2799-2832(2021).
[24] JIANG X, QAVI A J, HUANG S H et al. Whispering-gallery sensors[J]. Matter, 3, 371-392(2020).
[25] YANG H, CAO X, HU Z G et al. Micropascal-sensitivity ultrasound sensors based on optical microcavities[J]. Photonics Research, 11, 1139-1147(2023).
[26] YANG D Q, CHEN J, CAO Q T et al. Operando monitoring transition dynamics of responsive polymer using optofluidic microcavities[J]. Light: Science & Applications, 10, 128(2021).
[27] MA X, CAI Z, ZHUANG C et al. Integrated microcavity electric field sensors using Pound-Drever-Hall detection[J]. Nature Communications, 15, 1386(2024).
[28] NIE M, LI B, JIA K et al. Dissipative soliton generation and real-time dynamics in microresonator-filtered fiber lasers[J]. Light: Science & Applications, 11, 296(2022).
[29] YAO L, LIU P, CHEN H J et al. Soliton microwave oscillators using oversized billion Q optical microresonators[J]. Optica, 9, 561-564(2022).
[30] ZHANG H, TAN T, CHEN H J et al. Soliton microcombs multiplexing using intracavity-stimulated brillouin lasers[J]. Physical Review Letters, 130, 153802(2023).
[31] LAO C, JIN X, CHANG L et al. Quantum decoherence of dark pulses in optical microresonators[J]. Nature Communications, 14, 1802(2023).
[32] LEI Y, HU Z G, WANG M et al. Fully reconfigurable optomechanical add-drop filters[J]. Applied Physics Letters, 121, 121, 181110(2022).
[33] NIE M, MUSGRAVE J, JIA K et al. Turnkey photonic flywheel in a microresonator-filtered laser[J]. Nature Communications, 15, 55(2024).
[34] MA C, WANG C, PI Y et al. Fast-reconfigurable frequency comb generation based on AlGaAsOI waveguide with electro-optic time lens[J]. Communications Physics, 7, 1-8(2024).
[35] ZHANG M, DING S, LI X et al. Strong interactions between solitons and background light in Brillouin-Kerr microcombs[J]. Nature Communications, 15, 1661(2024).
[36] SHEN B, SHU H, XIE W et al. Harnessing microcomb-based parallel chaos for random number generation and optical decision making[J]. Nature Communications, 14, 4590(2023).
[37] HOOD C J, LYNN T W, DOHERTY A C et al. The atom-cavity microscope: single atoms bound in orbit by single photons[J]. Science, 287, 1447-1453(2000).
[38] WU N, CUI K, XU Q et al. On-chip mechanical exceptional points based on an optomechanical zipper cavity[J]. Science Advances, 9, 8892(2023).
[39] VERHAGEN E, DELÉGLISE S, WEIS S et al. Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode[J]. Nature, 482, 63-67(2012).
[40] LEE H, CHEN T, LI J et al. Chemically etched ultrahigh-Q wedge-resonator on a silicon chip[J]. Nature Photonics, 6, 369-373(2012).
[41] XU Q, SCHMIDT B, PRADHAN S et al. Micrometre-scale silicon electro-optic modulator[J]. Nature, 435, 325-327(2005).
[42] BUCHOLTZ F, DAGENAIS D M, KOO K P. High-frequency fibre-optic magnetometer with 70 fT/√(Hz) resolution[J]. Electronics Letters, 25, 1719-1721(1989).
[43] FORSTNER S. Ultrasensitive optomechanical magnetometry[J]. Advanced Materials, 26, 6348-6353(2014).
[44] LI B B, BRAWLEY G, GREENALL H et al. Ultrabroadband and sensitive cavity optomechanical magnetometry[J]. Photonics Research, 8, 1064-1071(2020).
[45] LI B B, BULLA D, PRAKASH V et al. Invited Article: Scalable high-sensitivity optomechanical magnetometers on a chip[J]. APL Photonics, 3, 120806(2018).
[46] YU Y, FORSTNER S, RUBINSZTEIN-DUNLOP H et al. Modelling of cavity optomechanical magnetometers[J]. Sensors, 18, 1558(2018).
[47] HU Z G, GAO Y M, LIU J F et al. Picotesla-sensitivity microcavity optomechanical magnetometry[Z](2024).
[48] ZHU J, ZHAO G, SAVUKOV I et al. Polymer encapsulated microcavity optomechanical magnetometer[J]. Scientific Reports, 7, 8896(2017).
[49] GOTARDO F, CAREY B J, GREENALL H et al. Waveguide-integrated chip-scale optomechanical magnetometer[J]. Optics Express, 31, 37663-37672(2023).
[50] YU C, JANOUSEK J, SHERIDAN E et al. Optomechanical magnetometry with a macroscopic resonator[J]. Physical Review Applied, 5, 044007(2016).
[51] XU G T, SHEN Z, WANG Y et al. Optomechanical magnetometry on a bubble resonator with YIG microsphere[J]. IEEE Photonics Technology Letters, 35, 393-396(2023).
[52] WU M, WU N L Y, FIRDOUS T et al. Nanocavity optomechanical torque magnetometry and radiofrequency susceptometry[J]. Nature Nanotechnology, 12, 127-131(2017).
[53] KIM P H, HAUER B D, CLARK T J et al. Magnetic actuation and feedback cooling of a cavity optomechanical torque sensor[J]. Nature Communications, 8, 1355(2017).
[54] KIM P H, HAUER B D, DOOLIN C et al. Approaching the standard quantum limit of mechanical torque sensing[J]. Nature Communications, 7, 13165(2016).
[55] WU J, MIAO Y, SONG B et al. Low temperature sensitive intensity-interrogated magnetic field sensor based on modal interference in thin-core fiber and magnetic fluid[J]. Applied Physics Letters, 104, 252402(2014).
[56] ZHU L, ZHAO N, LIN Q et al. Optical fiber SPR magnetic field sensor based on photonic crystal fiber with the magnetic fluid as cladding[J]. Measurement Science and Technology, 32, 075106(2021).
[57] LI X, DING H. All-fiber magnetic-field sensor based on microfiber knot resonator and magnetic fluid[J]. Optics Letters, 37, 5187-5189(2012).
[58] LV R Q, ZHAO Y, WANG D et al. Magnetic fluid-filled optical Fiber Fabry-Pérot sensor for magnetic field measurement[J]. IEEE Photonics Technology Letters, 26, 217-219(2014).
[59] XIA J, WANG F, LUO H et al. A magnetic field sensor based on a magnetic fluid-filled FP-FBG structure[J]. Sensors, 16, 620(2016).
[60] ZHAO Y, WANG X X, LV R Q et al. Highly sensitive reflective fabry-perot magnetic field sensor using magnetic fluid based on vernier effect[J]. IEEE Transactions on Instrumentation and Measurement, 70, 7000808(2021).
[61] ZHU S, LEI S, LIU N et al. Magnetic field sensing using magnetic-fluid-filled optofluidic ring resonator[J]. Microfluid Nanofluid, 21, 1-6(2017).
[62] ZHAO Xingyun, SONG Jien, DUAN Bing et al. Research on magnetic field sensing based on whispering gallery modes microbubble resonator[J]. SCIENCE CHINA Physics, Mechanics & Astronomy, 53, 114208(2023).
[63] LOU J, INSIGNARES R E, CAI Z et al. Soft magnetism, magnetostriction, and microwave properties of FeGaB thin films[J]. Applied Physics Letters, 91, 182504(2007).
[64] DONG C, LI M, LIANG X et al. Characterization of magnetomechanical properties in FeGaB thin films[J]. Applied Physics Letters, 113, 262401(2018).
[65] LOU J, LIU M, REED D et al. Giant electric field tuning of magnetism in novel multiferroic FeGaB/Lead Zinc Niobate-Lead Titanate (PZN-PT) Heterostructures[J]. Advanced Materials, 21, 4711-4715(2009).
[66] GRIFFITH W C, JIMENEZ-MARTINEZ R, SHAH V et al. Miniature atomic magnetometer integrated with flux concentrators[J]. Applied Physics Letters, 94, 023502(2009).
[67] FESCENKO I, JARMOLA A, SAVUKOV I et al. Diamond magnetometer enhanced by ferrite flux concentrators[J]. Physical Review Research, 2, 023394(2020).
[68] COLOMBANO M F, ARREGUI G, BONELL F et al. Ferromagnetic resonance assisted optomechanical magnetometer[J]. Physical Review Letters, 125, 147201(2020).
[69] ASPELMEYER M, KIPPENBERG T J, MARQUARDT F. Cavity optomechanics[J]. Reviews of Modern Physics, 86, 1391-1452(2014).
[70] LI B B, BÍLEK J, HOFF U B et al. Quantum enhanced optomechanical magnetometry[J]. Optica, 5, 850(2018).
[71] XIA Y, AGRAWAL A R, PLUCHAR C M et al. Entanglement-enhanced optomechanical sensing[J]. Nature Photonics, 17, 470-477(2023).
[72] WICKENBROCK A, JURGILAS S, DOW A et al. Magnetic induction tomography using an all-optical ^87Rb atomic magnetometer[J]. Optics Letters, 39, 6367(2014).
[73] ZOLGHARNI M, GRIFFITHS H, LEDGER P D. Frequency-difference MIT imaging of cerebral haemorrhage with a hemispherical coil array: numerical modelling[J]. Physiological Measurement, 31, S111(2010).
[74] WANG C, CHEN X, OUYANG J et al. Pulse current of multi-needle negative corona discharge and its electromagnetic radiation characteristics[J]. Energies, 11, 3120(2018).
[75] WANG P, ZHANG G. The measurement method for corona discharge current under high-voltage environment[J]. IEEE Transactions on Instrumentation and Measurement, 57, 1786-1790(2008).
Get Citation
Copy Citation Text
Jianfei LIU, Zhigang HU, Yimeng GAO, Beibei LI. Optical Microcavity Magnetic Sensors(Invited)[J]. Acta Photonica Sinica, 2024, 53(5): 0553108
Category: Special Issue for Microcavity Photonics
Received: Mar. 10, 2024
Accepted: May. 8, 2024
Published Online: Jun. 20, 2024
The Author Email: Beibei LI (libeibei@iphy.ac.cn)