Photonics Research, Volume. 9, Issue 4, 521(2021)
All-silicon dual-cavity fiber-optic pressure sensor with ultralow pressure-temperature cross-sensitivity and wide working temperature range
[1] S. Sundaram, P. Kellnhofer, Y. Li, J. Zhu, A. Torralba, W. Matusik. Learning the signatures of the human grasp using a scalable tactile glove. Nature, 569, 698-702(2019).
[2] C. Wang, D. Hwang, Z. Yu, K. Takei, J. Park, T. Chen, B. Ma, A. Javey. User-interactive electronic skin for instantaneous pressure visualization. Nat. Mater., 12, 899-904(2013).
[3] C. Pang, G. Lee, T. Kim, S. M. Kim, H. N. Kim, S. Ahn, K. Suh. A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibers. Nat. Mater., 11, 795-801(2012).
[4] J. Shin, Y. Yan, W. Bai, Y. Xue, P. Gamble, L. Tian, I. Kandela, C. R. Haney, W. Spees, Y. Lee, M. Choi, J. Ko, H. Ryu, J. Chang, M. Pezhouh, S. Kang, S. M. Won, K. J. Yu, J. Zhao, Y. K. Lee, M. R. MacEwan, S. Song, Y. Huang, W. Z. Ray, J. A. Rogers. Bioresorbable pressure sensors protected with thermally grown silicon dioxide for the monitoring of chronic diseases and healing processes. Nat. Biomed. Eng., 3, 37-46(2018).
[5] F. Yang, F. Gyger, L. Thévenaz. Intense Brillouin amplification in gas using hollow-core waveguides. Nat. Photonics, 14, 700-708(2020).
[6] X. Zhou, Q. Yu, W. Peng. Fiber-optic Fabry–Perot pressure sensor for down-hole application. Opt. Lasers Eng., 121, 289-299(2019).
[7] S. Gong, W. Schwalb, Y. Wang, Y. Chen, Y. Tang, J. Si, B. Shirinzadeh, W. Cheng. A wearable and highly sensitive pressure sensor with ultrathin gold nanowires. Nat. Commun., 5, 3132(2014).
[8] L. Shi, Z. Li, M. Chen, Y. Qin, Y. Jiang, L. Wu. Quantum effect-based flexible and transparent pressure sensors with ultrahigh sensitivity and sensing density. Nat. Commun., 11, 3529(2020).
[9] W. J. Pulliam, P. M. Russler, R. S. Fielder. High-temperature high-bandwidth fiber optic MEMS pressure-sensor technology for turbine-engine component testing. Proc. SPIE, 4578, 229-238(2002).
[10] W. Ma, Y. Jiang, H. Gao. Miniature all-fiber extrinsic Fabry–Pérot interferometric sensor for high-pressure sensing under high-temperature conditions. Meas. Sci. Technol., 30, 025104(2019).
[11] H. Zhang, J. Liu, J. Li, P. Jia. Miniature all-silica microbubble-based fiber optic Fabry-Perot pressure sensor with pressure leading-in tube. J. Sens., 2019, 5704614(2019).
[12] C. Pang, H. Bae, A. Gupta, K. Bryden, M. Yu. MEMS Fabry-Perot sensor interrogated by optical system-on-a-chip for simultaneous pressure and temperature sensing. Opt. Express, 21, 21829-21839(2013).
[13] W. Li, T. Liang, P. Jia, C. Lei. Fiber-optic Fabry–Perot pressure sensor based on sapphire direct bonding for high-temperature applications. Appl. Opt., 58, 1662-1666(2019).
[14] X. Wang, S. Wang, J. Jiang, K. Liu, M. Xiao, X. Chen, D. Zhang, T. Liu. An MEMS optical fiber pressure sensor fabricated by Au-Au thermal-compression bonding. Proc. SPIE, 10618, 106180J(2018).
[15] J. Yin, T. Liu, J. Jiang, K. Liu, S. Wang, Z. Qin, S. Zou. Batch-producible fiber-optic Fabry–Perot sensor for simultaneous pressure and temperature sensing. IEEE Photon. Technol. Lett., 26, 2070-2073(2014).
[16] X. Jiang, C. Lin, Y. Huang, K. Luo, J. Zhang, Q. Jiang, C. Zhang. Hybrid fiber optic sensor, based on the Fabry–Perot interference, assisted with fluorescent material for the simultaneous measurement of temperature and pressure. Sensors, 19, 1097(2019).
[17] J. A. Guggenheim, J. Li, T. J. Allen, R. J. Colchester, S. Noimark, O. Ogunlade, I. P. Parkin, I. Papakonstantinou, A. E. Desjardins, E. Z. Zhang. Ultrasensitive plano-concave optical microresonators for ultrasound sensing. Nat. Photonics, 11, 714-719(2017).
[18] Z. Ran, Y. Rao, W. Liu, X. Liao, K. Chiang. Laser-micromachined Fabry-Perot optical fiber tip sensor for high-resolution temperature-independent measurement of refractive index. Opt. Express, 16, 2252-2263(2008).
[19] S. P. Timoshenko, S. Woinowsky-Krieger. Theory of Plates and Shells(1959).
[20] T. Liu, J. Yin, J. Jiang, K. Liu, S. Wang, S. Zou. Differential-pressure-based fiber-optic temperature sensor using Fabry–Perot interferometry. Opt. Lett., 40, 1049-1052(2015).
[21] F. G. D. Corte, M. E. Montefusco, L. Moretti, I. Rendina, G. Cocorullo. Temperature dependence analysis of the thermo-optic effect in silicon by single and double oscillator models. J. Appl. Phys., 88, 7115-7119(2000).
[22] G. Liu, Q. Sheng, D. Dam, J. Hua, W. Hou, M. Han. Self-gauged fiber-optic micro-heater with operation temperature above 1000°C. Opt. Lett., 42, 1412-1415(2017).
[23] X. Wang, S. Wang, J. Jiang, K. Liu, P. Zhang, W. Wu, T. Liu. High-accuracy hybrid fiber-optic Fabry-Pérot sensor based on MEMS for simultaneous gas refractive-index and temperature sensing. Opt. Express, 27, 4204-4215(2019).
[24] X. Wang, S. Wang, J. Jiang, K. Liu, X. Zhang, M. Xiao, H. Xiao, T. Liu. Non-destructive residual pressure self-measurement method for the sensing chip of optical Fabry-Perot pressure sensor. Opt. Express, 25, 31937-31947(2017).
[25] X. Guo, J. Zhou, C. Du, X. Wang. Highly sensitive miniature all-silica fiber tip Fabry–Perot pressure sensor. IEEE Photon. Technol. Lett., 31, 689-692(2019).
[26] Z. Zhang, J. He, B. Du, F. Zhang, Y. Wang. Measurement of high pressure and high temperature using a dual-cavity Fabry–Perot interferometer created in cascade hollow-core fibers. Opt. Lett., 43, 6009-6012(2018).
[27] S. Liu, Y. Wang, C. Liao, Y. Wang, J. He, C. Fu, K. Yang, Z. Bai, F. Zhang. Nano silica diaphragm in-fiber cavity for gas pressure measurement. Sci. Rep., 7, 787(2017).
[28] S. Wu, G. Yan, C. Wang, Z. Lian, X. Chen, S. He. FBG incorporated side-open Fabry–Perot cavity for simultaneous gas pressure and temperature measurements. J. Lightwave Technol., 34, 3761-3767(2016).
[29] Y. Zhang, L. Yuan, X. Lan, A. Kaur, J. Huang. High-temperature fiber-optic Fabry–Perot interferometric pressure sensor fabricated by femtosecond laser. Opt. Lett., 38, 4609-4612(2013).
Get Citation
Copy Citation Text
Xue Wang, Junfeng Jiang, Shuang Wang, Kun Liu, Tiegen Liu, "All-silicon dual-cavity fiber-optic pressure sensor with ultralow pressure-temperature cross-sensitivity and wide working temperature range," Photonics Res. 9, 521 (2021)
Category: Optical Devices
Received: Nov. 6, 2020
Accepted: Feb. 3, 2021
Published Online: Apr. 6, 2021
The Author Email: Junfeng Jiang (jiangjfjxu@tju.edu.cn), Shuang Wang (shuangwang@tju.edu.cn), Tiegen Liu (tgliu@tju.edu.cn)