Laser & Optoelectronics Progress, Volume. 59, Issue 12, 1210006(2022)

Point Cloud Analysis Method Based on Feature Negative Feedback Convolution

Lintao Deng and Zhijun Fang*
Author Affiliations
  • School of Electronic and Electrical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
  • show less
    Figures & Tables(9)
    Schematic diagram of overall network structure
    Diagram of structure aware KNN and classic KNN
    Feature negative feedback convolution module
    Global semantic reasoning module
    Visualization of part segmentation results
    Test results of sparser points
    • Table 1. Classification accuracy on ModelNet40 data set

      View table

      Table 1. Classification accuracy on ModelNet40 data set

      MethodInput typePointsMean class accuracy /%Overall accuracy /%
      Point-CNN40coords1k88.191.7
      PointNet15coords1k86.089.2
      A-SCN28coords1k90.0
      Kd-Net38coords1k90.6
      PointNet++16coords1k90.7
      KCNet41coords1k91.0
      Spec-GCN42coords1k91.5
      DGCNN17coords1k90.292.2
      RS-CNN18coords1k93.6
      KP-Conv43coords1k92.9
      PointASNL44coords1k93.2
      Proposedcoords1k91.093.8
      SpiderCNN45coords + norm5k92.4
      DensePoint46coords + norm1k93.2
      SO-NET39coords + norm5k90.893.4
      PointNet++16coords + norm5k91.9
      DGCNN17coords2k90.793.5
    • Table 2. Part segmentation results [mIou (%)] on ShapeNet Part data set

      View table

      Table 2. Part segmentation results [mIou (%)] on ShapeNet Part data set

      MethodPointNet15PointNet++16SpiderCNN45SO-NET39A-SCN28P2Sequence48PCNN49DGCNN17RS-CNN18PointASNL44Proposed
      Overall mIou83.785.185.384.684.685.285.185.286.286.186.4
      Air plane83.482.483.581.983.882.682.484.083.584.184.3
      Bag78.779.081.083.580.881.880.183.484.884.785.1
      Cap82.587.787.284.883.587.585.586.788.887.988.6
      Car74.977.377.578.179.377.379.577.879.679.779.9
      Chair89.690.890.790.890.590.890.890.691.292.291.3
      Ear phone73.071.876.872.269.877.173.274.781.173.779.2
      Guitar91.591.091.190.191.791.191.391.291.691.091.8
      Knife85.985.987.383.686.586.986.087.588.487.289.0
      Lamp80.883.783.382.382.983.985.082.886.084.285.2
      Laptop95.395.395.895.296.095.795.795.796.095.895.7
      Motobike65.271.670.269.369.270.873.266.373.774.472.3
      Mug93.094.193.594.293.894.694.894.994.195.294.5
      Pistol81.281.382.780.082.579.383.381.183.481.082.0
      Rocket57.958.759.751.662.958.151.063.560.563.060.3
      Skate board72.876.475.872.174.475.275.074.577.776.376.4
      Table80.682.682.882.680.882.881.882.683.683.284.4
    • Table 3. Ablation experiments about effects of different network components on ShapeNet part data set

      View table

      Table 3. Ablation experiments about effects of different network components on ShapeNet part data set

      ModelSAKNNAttentive poolingFeature negative feedback convolutionGlobal context reasoning moduleOverall mIou /%
      084.9
      185.2
      285.4
      385.8
      486.1
    Tools

    Get Citation

    Copy Citation Text

    Lintao Deng, Zhijun Fang. Point Cloud Analysis Method Based on Feature Negative Feedback Convolution[J]. Laser & Optoelectronics Progress, 2022, 59(12): 1210006

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Apr. 26, 2021

    Accepted: Jun. 10, 2021

    Published Online: May. 23, 2022

    The Author Email: Zhijun Fang (zjfang@foxmail.com)

    DOI:10.3788/LOP202259.1210006

    Topics