Optoelectronic Technology, Volume. 43, Issue 3, 207(2023)
Generation and Regulation Characteristics of Microscale Chiral Array Light Field
[1] Stephens P J, Devlin F J. Determination of the structure of chiral molecules using ab initio vibrational circular dichroism spectroscopy[J]. Chirality, 12, 172-179(2000).
[2] Rodrigues S P, Lan S, Kang L et al. Nonlinear imaging and spectroscopy of chiral metamaterials[J]. Advanced Materials, 26, 6157-6162(2014).
[3] Rodrigues S P, Cui Y, Lan S et al. Metamaterials enable chiral‑selective enhancement of two‑photon luminescence from quantum emitters[J]. Advanced Materials, 27, 1124-1130(2015).
[4] Cao T, Bao J, Mao L et al. Controlling lateral fano interference optical force with Au‑Ge2Sb2Te5 hybrid nanostructure[J]. ACS Photonics, 3, 1934-1942(2016).
[5] Ali R, Pinheiro F A, Dutra R S et al. Enantioselective manipulation of single chiral nanoparticles using optical tweezers[J]. Nanoscale, 12, 5031-5037(2020).
[6] Li M, Yan S, Yao B et al. Optical trapping force and torque on spheroidal Rayleigh particles with arbitrary spatial orientations[J]. Journal of the Optical Society of America A, 33, 1341-1347(2016).
[7] Hendry E, Carpy T, Johnston J et al. Ultrasensitive detection and characterization of biomolecules using superchiral fields[J]. Nature Nanotechnology, 5, 783-787(2010).
[8] Lee Y Y, Kim R M, Im S W et al. Plasmonic metamaterials for chiral sensing applications[J]. Nanoscale, 12, 58-66(2020).
[9] Karczmarek J, Wright J, Corkum P et al. Optical centrifuge for molecules[J]. Physical Review Letters, 82, 3420-3423(1999).
[10] Milner A A, Fordyce J A M, Mac Phail‑Bartley I et al. Controlled enantioselective orientation of chiral molecules with an optical centrifuge[J]. Physical Review Letters, 122, 223201(2019).
[11] Hu H, Gan Q, Zhan Q. Generation of a nondiffracting superchiral optical needle for circular dichroism imaging of sparse subdiffraction objects[J]. Physical Review Letters, 122, 223901(2019).
[12] Toyoda K, Takahashi F, Takizawa S et al. Transfer of light helicity to nanostructures[J]. Physical Review Letters, 110, 143603(2013).
[13] Omatsu T, Miyamoto K, Toyoda K et al. A new twist for materials science: The formation of chiral structures using the angular momentum of light[J]. Advanced Optical Materials, 7, 1801672(2019).
[14] Yang D, Li Y, Deng D et al. Chiral optical field generated by an annular subzone vortex phase plate[J]. Optics Letters, 43, 4594-4597(2018).
[15] Abramochkin E G, Volostnikov V G. Spiral light beams[J]. Physics‑Uspekhi, 47, 1177(2004).
[16] Chang C, Gao Y, Xia J et al. Shaping of optical vector beams in three dimensions[J]. Optics Letters, 42, 3884-3887(2017).
[17] Ni J, Wang C, Zhang C et al. Three‑dimensional chiral microstructures fabricated by structured optical vortices in isotropic material[J]. Light: Science & Applications, 6(2017).
[19] Ma H, Zhang Y, Min C et al. Controllable propagation and transformation of chiral intensity field at focus[J]. Optics Letters, 45, 4823-4826(2020).
[20] Richards B, Wolf E. Electromagnetic diffraction in optical systems, II. Structure of the image field in an aplanatic system[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 253, 358-379(1959).
[23] Ma H, Li X, Tai Y et al. In situ measurement of the topological charge of a perfect vortex using the phase shift method[J]. Optics Letters, 42, 135-138(2017).
Get Citation
Copy Citation Text
Mengran FAN, Haixiang MA, Xinzhong LI. Generation and Regulation Characteristics of Microscale Chiral Array Light Field[J]. Optoelectronic Technology, 2023, 43(3): 207
Category:
Received: Jul. 5, 2023
Accepted: --
Published Online: Mar. 21, 2024
The Author Email: