Acta Optica Sinica, Volume. 36, Issue 1, 117001(2016)
Dual Modulation Optical Polarimetry for Glucose Monitoring
[1] [1] Alwan A. Global status report on noncommunicable diseases 2010[R]. World Health Organization, 2011.
[2] [2] McNichols R J, Coté G L. Optical glucose sensing in biological fluids: An overview[J]. Journal of Biomedical Optics, 2000, 5(1): 5-16.
[3] [3] Khalil O S. Spectroscopic and clinical aspects of noninvasive glucose measurements[J]. Clinical Chemistry, 1999, 45(2): 165-177.
[5] [5] Marbach R, Koschinsky T, Gries F A, et al.. Noninvasive blood glucose assay by near-infrared diffuse reflectance spectroscopy of the human inner lip[J]. Applied Spectroscopy, 1993, 47(7): 875-881
[6] [6] Rabinovitch B, March W F, Adams R L. Noninvasive glucose monitoring of the aqueous humor of the eye: Part I. Measurement of very small optical rotation[J]. Diabetes Care, 1982, 5(3): 254-258.
[7] [7] March W F, Rabinovitch B, Adams R L. Noninvasive glucose monitoring of the aqueous humor of the eye: Part II. Animal studies and the scleral lens[J]. Diabetes Care, 1982, 5(3): 259-265.
[8] [8] Cameron B D, Coté G L. Noninvasive glucose sensing utilizing a digital closed-loop polarimetric approach[J]. IEEE Transactions on Biomedical Engineering, 1997, 44(12):1221-1227.
[9] [9] Kottmann J, Rey J M, Luginbühl J, et al.. Glucose sensing in human epidermis using mid-infrared photoacoustic detection[J]. Biomedical Optics Express, 2012, 3(4): 667-680.
[10] [10] Su Y, Meng Z, Wang L, et al.. Effect of temperature on noninvasive blood glucose monitoring in vivo using optical coherence tomography [J]. Chinese Optics Letters, 2014, 12(11): 111701.
[11] [11] Su Ya, Meng Zhuo, Wang Longzhi, et al.. Correlation analysis and calibration of noninvasive blood glucose monitoring in vivo with optical coherence tomography[J]. Chinese J Lasers, 2014, 41(7): 0704002.
[12] [12] Zhu Yue, Gao Wanrong, Guo Yingcheng. A method of improving imaging quality of full-field optical coherence tomography[J]. Acta Optica Sinica, 2015, 35(5): 0517001.
[13] [13] Zeng L, Liu G, Yang D, et al.. Design of a portable noninvasive photoacoustic glucose monitoring system integrated laser diode excitation with annular array detection[C]. SPIE, 2009, 7280: 72802F.
[14] [14] MacKenzie H A, Ashton H S, Spiers S, et al.. Advances in photoacoustic noninvasive glucose testing[J]. Clinical Chemistry, 1999, 45(9): 1587-1595.
[15] [15] Cameron B D. Noninvasive birefringence compensated sensing polarimeter[P]. US Patent WO2005067522A2, 2007.
[16] [16] Gillham E J. Photoelectric polarimeter using the Faraday effect[J]. Nature, 1956, 178(4547): 1412-1413.
[17] [17] March W, Engerman R, Rabinovitch B. Optical monitor of glucose[J]. ASAIO Transactions, 1979, 25(1): 28-31.
[18] [18] Cameron B D, Gorde H W, Satheesan B, et al.. The use of polarized laser light through the eye for noninvasive glucose monitoring[J]. Diabetes Technology & Therapeutics, 1999, 1(2): 135-143.
[19] [19] King T W, Coté G L, McNichols R, et al.. Multispectral polarimetric glucose detection using a single Pockels cell[J]. Optics Engineering, 1994, 33(8): 2746-2753.
[20] [20] Malik B H, Coté G L. Modeling the corneal birefringence of the eye toward the development of a polarimetric glucose sensor[J]. Journal of Biomedical Optics, 2010, 15(3): 037012.
[21] [21] Pirnstill C W, Coté G L. Modeling the optical coupling across the anterior chamber of the eye towards polarimetric glucose sensing[C]. SPIE, 2014, 8951: 895107.
[22] [22] Pirnstill C W, Malik B H, Gresham V C, et al.. In vivo glucose monitoring using dual-wavelength polarimetry to overcome corneal birefringence in the presence of motion[J]. Diabetes Technology & Therapeutics, 2012,14(9): 819-827.
[23] [23] Wan Q J, Coté G L. Dual-wavelength polarimetry for monitoring glucose in the presence of varying birefringence[J]. Journal of Biomedical Optics, 2005, 10(2): 024029.
[24] [24] Malik B H, Coté G L. Real-time, closed-loop dual-wavelength polarimetry for monitoring glucose[J]. Journal of Biomedical Optics, 2010, 15(1): 017002.
[25] [25] Cameron B D, Anumula H. Development of a real-time corneal birefringence compensated glucose sensing polarimeter[J]. Diabetes Technology & Therapeutics, 2006, 8(2): 156-164.
[26] [26] Pirnstill C W, Grunden D, Coté G L. Polarimetric glucose sensing in vitro: A high frequency approach[C]. SPIE, 2013, 8591: 859101.
[27] [27] Grunden D T, Pirnstill C W, Coté G L. High-speed dual-wavelength optical polarimetry for glucose sensing[C]. SPIE, 2014, 8951: 895111.
[28] [28] Cai Wei, Wu Fancheng, Yang Zhiyong, et al.. Research on magneto- optic modulation technology and application[J]. Laser & Optoelectronics Progress, 2015, 52(6): 060003.
[29] [29] Wang Y. Development of Novel Mid-Infrared Spectrometers Based on Quantum Cascade Lasers[D]. Princeton: Princeton University, 2013.
[30] [30] Brumfield B, Sun W, Wang Y, et al.. Dual modulation Faraday rotation spectroscopy of HO2 in a flow reactor[J]. Optics Express, 2014, 39(7): 1783-1786
[31] [31] McMurry J. Organic Chemistry[M]. Pacific Grove: Cole Publishing Company,1982: 284-325.
[32] [32] Frankin G F, Powell D J, Emami-Naeini A. Feedback Control of Dynamic Systems[M]. Upper Saddle River: Prentice Hall PTR, 2001.
[33] [33] Baba J S, Cameron B D, Theru S, et al.. Effect of temperature, pH, and corneal birefringence on polarimetric glucose monitoring in the eye[J]. Journal of Biomedical Optics, 2002, 7(3): 321-328.
Get Citation
Copy Citation Text
Yu Zhenfang, Qiu Qi, Guo Yong. Dual Modulation Optical Polarimetry for Glucose Monitoring[J]. Acta Optica Sinica, 2016, 36(1): 117001
Category: Medical optics and biotechnology
Received: Jul. 8, 2015
Accepted: --
Published Online: Dec. 25, 2015
The Author Email: Zhenfang Yu (yuzhenfang111@163.com)