Acta Optica Sinica, Volume. 42, Issue 3, 0327009(2022)
On-Chip Chiral Nanophotonic Devices Based on Semiconductor Quantum Dots
[1] Bennett C H. DiVincenzo D P. Quantum information and computation[J]. Nature, 404, 247-255(2000).
[2] O’Brien J L, Furusawa A. Photonic quantum technologies[J]. Nature Photonics, 3, 687-695(2009).
[3] Wang J W, Sciarrino F, Laing A et al. Integrated photonic quantum technologies[J]. Nature Photonics, 14, 273-284(2020).
[4] O’Brien J L. Optical quantum computing[J]. Science, 318, 1567-1570(2007).
[5] Kok P, Munro W J, Nemoto K et al. Linear optical quantum computing with photonic qubits[J]. Reviews of Modern Physics, 79, 135(2007).
[6] Jin X M, Ren J G, Yang B et al. Experimental free-space quantum teleportation[J]. Nature Photonics, 4, 376-381(2010).
[7] Bouwmeester D, Pan J W, Mattle K et al. Experimental quantum teleportation[J]. Nature, 390, 575-579(1997).
[8] Pirandola S, Eisert J, Weedbrook C et al. Advances in quantum teleportation[J]. Nature Photonics, 9, 641-652(2015).
[9] Aspuru-Guzik A, Walther P. Photonic quantum simulators[J]. Nature Physics, 8, 285-291(2012).
[10] Tanzilli S, Tittel W, Halder M et al. A photonic quantum information interface[J]. Nature, 437, 116-120(2005).
[11] Walls D F, Collet M J, Milburn G J. Analysis of a quantum measurement[J]. Physical Review D, 32, 3208-3215(1985).
[12] Chantasri A, Dressel J, Jordan A N. Action principle for continuous quantum measurement[J]. Physical Review A, 88, 042110(2013).
[13] Yamamoto N, Nurdin H I, James M R et al. Avoiding entanglement sudden death via measurement feedback control in a quantum network[J]. Physical Review A, 78, 042339(2008).
[14] Cook R L, Martin P J, Geremia J M. Optical coherent state discrimination using a closed-loop quantum measurement[J]. Nature, 446, 774-777(2007).
[15] Bose S. Quantum communication through an unmodulated spin chain[J]. Physical Review Letters, 91, 207901(2003).
[16] Schrader D, Dotsenko I, Khudaverdyan M et al. Neutral atom quantum register[J]. Physical Review Letters, 93, 150501(2004).
[17] Saffman M. Quantum computing with atomic qubits and Rydberg interactions: progress and challenges[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 49, 202001(2016).
[18] Levine H, Keesling A, Omran A et al. High-fidelity control and entanglement of Rydberg-atom qubits[J]. Physical Review Letters, 121, 123603(2018).
[19] Warburton R J. Single spins in self-assembled quantum dots[J]. Nature Materials, 12, 483-493(2013).
[20] Greilich A, Economou S E, Spatzek S et al. Ultrafast optical rotations of electron spins in quantum dots[J]. Nature Physics, 5, 262-266(2009).
[21] Hanson R, Awschalom D D. Coherent manipulation of single spins in semiconductors[J]. Nature, 453, 1043-1049(2008).
[22] Neumann P, Mizuochi N, Rempp F et al. Multipartite entanglement among single spins in diamond[J]. Science, 320, 1326-1329(2008).
[23] Devoret M H, Schoelkopf R J. Superconducting circuits for quantum information: an outlook[J]. Science, 339, 1169-1174(2013).
[24] Berkley A J, Xu H, Ramos R C et al. Entangled macroscopic quantum states in two superconducting qubits[J]. Science, 300, 1548-1550(2003).
[25] Bocko M F, Herr A M, Feldman M J. Prospects for quantum coherent computation using superconducting electronics[J]. IEEE Transactions on Applied Superconductivity, 7, 3638-3641(1997).
[26] Bussières F, Clausen C, Tiranov A et al. Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory[J]. Nature Photonics, 8, 775-778(2014).
[27] Gazzano O, de Vasconcellos S M, Arnold C et al. Bright solid-state sources of indistinguishable single photons[J]. Nature Communications, 4, 1425(2013).
[28] Förtsch M, Fürst J U, Wittmann C et al. A versatile source of single photons for quantum information processing[J]. Nature Communications, 4, 1818(2013).
[29] Kielpinski D, Monroe C, Wineland D J. Architecture for a large-scale ion-trap quantum computer[J]. Nature, 417, 709-711(2002).
[30] Stick D, Hensinger W K, Olmschenk S et al. Ion trap in a semiconductor chip[J]. Nature Physics, 2, 36-39(2006).
[31] Monroe C, Kim J. Scaling the ion trap quantum processor[J]. Science, 339, 1164-1169(2013).
[32] Home J P, Hanneke D, Jost J D et al. Complete methods set for scalable ion trap quantum information processing[J]. Science, 325, 1227-1230(2009).
[33] Troiani F, Hohenester U, Molinari E. Exploiting exciton-exciton interactions in semiconductor quantum dots for quantum-information processing[J]. Physical Review B, 62, R2263(2000).
[34] Akopian N, Lindner N H, Poem E et al. Entangled photon pairs from semiconductor quantum dots[J]. Physical Review Letters, 96, 130501(2006).
[35] Moreau E, Robert I, Manin L et al. Quantum cascade of photons in semiconductor quantum dots[J]. Physical Review Letters, 87, 183601(2001).
[36] Lodahl P, Mahmoodian S, Stobbe S. Interfacing single photons and single quantum dots with photonic nanostructures[J]. Reviews of Modern Physics, 87, 347(2015).
[37] Lodahl P, Mahmoodian S, Stobbe S et al. Chiral quantum optics[J]. Nature, 541, 473-480(2017).
[38] Abujetas D R. Sánchez-Gil J A. Spin angular momentum of guided light induced by transverse confinement and intrinsic helicity[J]. ACS Photonics, 7, 534-545(2020).
[39] Ko H C, Park D C, Kawakami Y et al. Self-organized CdSe quantum dots onto cleaved GaAs (110) originating from Stranski-Krastanow growth mode[J]. Applied Physics Letters, 70, 3278-3280(1997).
[40] Schikora D, Schwedhelm S, As D J et al. Investigations on the Stranski-Krastanow growth of CdSe quantum dots[J]. Applied Physics Letters, 76, 418-420(2000).
[41] Tinjod F, Robin I C, André R et al. Key parameters for the formation of II-VI self-assembled quantum dots[J]. Journal of Alloys and Compounds, 371, 63-66(2004).
[42] Ledentsov N N, Shchukin V A, Grundmann M E et al. Direct formation of vertically coupled quantum dots in Stranski-Krastanow growth[J]. Physical Review B, 54, 8743-8750(1996).
[43] Wang L G, Kratzer P, Moll N et al. Size, shape, and stability of InAs quantum dots on the GaAs(001) substrate[J]. Physical Review B, 62, 1897(2000).
[44] Leonard D, Pond K, Petroff P M. Critical layer thickness for self-assembled InAs islands on GaAs[J]. Physical Review B, 50, 11687(1994).
[45] Fafard S, Wasilewski Z. McCaffrey J, et al. InAs self-assembled quantum dots on InP by molecular beam epitaxy[J]. Applied Physics Letters, 68, 991-993(1996).
[46] Raab A, Springholz G. Oswald ripening and shape transitions of self-assembled PbSe quantum dots on PbTe (111) during annealing[J]. Applied Physics Letters, 77, 2991-2993(2000).
[47] Abtin L, Springholz G, Holy V. Surface exchange and shape transitions of PbSe quantum dots during overgrowth[J]. Physical Review Letters, 97, 266103(2006).
[48] Strauf S, Stoltz N G, Rakher M T et al. High-frequency single-photon source with polarization control[J]. Nature Photonics, 1, 704-708(2007).
[49] Senellart P, Solomon G, White A. High-performance semiconductor quantum-dot single-photon sources[J]. Nature Nanotechnology, 12, 1026-1039(2017).
[50] Lodahl P. Quantum-dot based photonic quantum networks[J]. Quantum Science and Technology, 3, 013001(2018).
[51] Hepp S, Jetter M, Portalupi S L et al. Semiconductor quantum dots for integrated quantum photonics[J]. Advanced Quantum Technologies, 2, 1900020(2019).
[52] Karabchevsky A, Katiyi A, Ang A S et al. On-chip nanophotonics and future challenges[J]. Nanophotonics, 9, 3733-3753(2020).
[53] Iwamoto S, Ota Y, Arakawa Y. Recent progress in topological waveguides and nanocavities in a semiconductor photonic crystal platform[J]. Optical Materials Express, 11, 319-333(2021).
[54] Peng K. Quantum state control and detection in single quantum dots[D]. Beijing: University of Chinese Academy of Sciences(2019).
[55] Tang J, Xu X L. Magneto optical properties of self-assembled InAs quantum dots for quantum information processing[J]. Chinese Physics B, 27, 027804(2018).
[56] Sapienza L, Davanço M, Badolato A et al. Nanoscale optical positioning of single quantum dots for bright and pure single-photon emission[J]. Nature Communications, 6, 7833(2015).
[57] Arakawa Y, Holmes M J. Progress in quantum-dot single photon sources for quantum information technologies: a broad spectrum overview[J]. Applied Physics Reviews, 7, 021309(2020).
[58] Press D, Ladd T D, Zhang B Y et al[J]. Complete quantum control of a single quantum dot spin using ultrafast optical pulses Nature, 456, 218-221(2008).
[59] Yoneda J, Takeda K, Otsuka T et al. A quantum-dot spin qubit with coherence limited by charge noise and fidelity higher than 99.9[J]. Nature Nanotechnology, 13, 102-106(2018).
[60] Gerardot B D, Brunner D, Dalgarno P A et al. Optical pumping of a single hole spin in a quantum dot[J]. Nature, 451, 441-444(2008).
[61] Berezovsky J, Mikkelsen M H, Stoltz N G et al. Picosecond coherent optical manipulation of a single electron spin in a quantum dot[J]. Science, 320, 349-352(2008).
[62] Peng K, Wu S Y, Xie X et al. Giant photocurrent enhancement by Coulomb interaction in a single quantum dot for energy harvesting[J]. Physical Review Applied, 11, 024015(2019).
[63] Brunner D, Gerardot B D, Dalgarno P A et al. A coherent single-hole spin in a semiconductor[J]. Science, 325, 70-72(2009).
[64] Ramsay A J, Boyle S J, Kolodka R S et al. Fast optical preparation, control, and readout of a single quantum dot spin[J]. Physical Review Letters, 100, 197401(2008).
[65] Mar J D, Baumberg J J, Xu X L et al. Ultrafast high-fidelity initialization of a quantum-dot spin qubit without magnetic fields[J]. Physical Review B, 90, 241303(2014).
[66] Tang J, Cao S, Gao Y N et al. Charge state control in single InAs/GaAs quantum dots by external electric and magnetic fields[J]. Applied Physics Letters, 105, 041109(2014).
[67] Mar J D, Xu X L, Baumberg J J et al. Bias-controlled single-electron charging of a self-assembled quantum dot in a two-dimensional-electron-gas-based n-i-Schottky diode[J]. Physical Review B, 83, 075306(2011).
[68] Godden T M, Quilter J H, Ramsay A J et al. Coherent optical control of the spin of a single hole in an InAs/GaAs quantum dot[J]. Physical Review Letters, 108, 017402(2012).
[69] de Greve K, McMahon P L, Press D et al[J]. Ultrafast coherent control and suppressed nuclear feedback of a single quantum dot hole qubit Nature Physics, 7, 872-878(2011).
[70] Högele A, Kroner M, Seidl S et al. Spin-selective optical absorption of singly charged excitons in a quantum dot[J]. Applied Physics Letters, 86, 221905(2005).
[71] Toft I, Phillips R T. Hole g factors in GaAs quantum dots from the angular dependence of the spin fine structure[J]. Physical Review B, 76, 033301(2007).
[72] Nakaoka T, Saito T, Tatebayashi J et al. Size, shape, and strain dependence of the g factor in self-assembled In(Ga)As quantum dots[J]. Physical Review B, 70, 235337(2004).
[73] Schulhauser C, Haft D, Warburton R J et al. Magneto-optical properties of charged excitons in quantum dots[J]. Physical Review B, 66, 193303(2002).
[74] Tsai M F, Lin H, Lin C H et al. Diamagnetic response of exciton complexes in semiconductor quantum dots[J]. Physical Review Letters, 101, 267402(2008).
[75] van Bree J, Silov A Y, Koenraad P M et al. G factors and diamagnetic coefficients of electrons, holes, and excitons in InAs/InP quantum dots[J]. Physical Review B, 85, 165323(2012).
[76] Wu S Y, Peng K, Xie X et al. Electron and hole g tensors of neutral and charged excitons in single quantum dots by high-resolution photocurrent spectroscopy[J]. Physical Review Applied, 14, 014049(2020).
[77] Peng K, Wu S Y, Tang J et al. Probing the dark-exciton states of a single quantum dot using photocurrent spectroscopy in a magnetic field[J]. Physical Review Applied, 8, 064018(2017).
[78] Ren Q J, Lu J, Tan H H et al. Spin-resolved Purcell effect in a quantum dot microcavity system[J]. Nano Letters, 12, 3455-3459(2012).
[79] Qian C J, Xie X, Yang J N et al. Enhanced strong interaction between nanocavities and p-shell excitons beyond the dipole approximation[J]. Physical Review Letters, 122, 087401(2019).
[80] Coles R J, Price D M, Royall B et al. Path-dependent initialization of a single quantum dot exciton spin in a nanophotonic waveguide[J]. Physical Review B, 95, 121401(2017).
[81] Mu X, Wu S L, Cheng L R et al. Edge couplers in silicon photonic integrated circuits: a review[J]. Applied Sciences, 10, 1538(2020).
[82] Bakir B B, de Gyves A V, Orobtchouk R et al. Low-loss (< 1 dB) and polarization-insensitive edge fiber couplers fabricated on 200-mm silicon-on-insulator wafers[J]. IEEE Photonics Technology Letters, 22, 739-741(2010).
[83] Romero-García S, Marzban B, Merget F et al. Edge couplers with relaxed alignment tolerance for pick-and-place hybrid integration of III-V lasers with SOI waveguides[J]. IEEE Journal of Selected Topics in Quantum Electronics, 20, 369-379(2014).
[84] Papes M, Cheben P, Benedikovic D et al. Fiber-chip edge coupler with large mode size for silicon photonic wire waveguides[J]. Optics Express, 24, 5026-5038(2016).
[85] Selvaraja S K, Vermeulen D, Schaekers M et al. Highly efficient grating coupler between optical fiber and silicon photonic circuit[C]∥2009 Conference on Lasers and Electro-Optics and 2009 Conference on Quantum electronics and Laser Science Conference, June 2-4, 2009, Baltimore, MD, USA., 1-2(2009).
[86] Roelkens G, Van Thourhout D, Baets R. High efficiency grating coupler between silicon-on-insulator waveguides and perfectly vertical optical fibers[J]. Optics Letters, 32, 1495-1497(2007).
[87] Mekis A, Gloeckner S, Masini G et al. A grating-coupler-enabled CMOS photonics platform[J]. IEEE Journal of Selected Topics in Quantum Electronics, 17, 597-608(2011).
[88] Ding Y, Peucheret C, Ou H et al. Fully etched apodized grating coupler on the SOI platform with-0.58 dB coupling efficiency[J]. Optics Letters, 39, 5348-5350(2014).
[89] Ding Y, Ou H, Peucheret C. Ultrahigh-efficiency apodized grating coupler using fully etched photonic crystals[J]. Optics Letters, 38, 2732-2734(2013).
[90] Makhonin M N, Dixon J E, Coles R J et al. Waveguide coupled resonance fluorescence from on-chip quantum emitter[J]. Nano Letters, 14, 6997-7002(2014).
[91] Thyrrestrup H, Kiršanské G, Le Jeannic H et al. Quantum optics with near-lifetime-limited quantum-dot transitions in a nanophotonic waveguide[J]. Nano Letters, 18, 1801-1806(2018).
[92] Coles R J, Price D M, Dixon J E et al. Chirality of nanophotonic waveguide with embedded quantum emitter for unidirectional spin transfer[J]. Nature Communications, 7, 11183(2016).
[93] Hurst D L, Price D M, Bentham C et al. Nonreciprocal transmission and reflection of a chirally coupled quantum dot[J]. Nano Letters, 18, 5475-5481(2018).
[94] Mrowiński P, Schnauber P, Gutsche P et al. Directional emission of a deterministically fabricated quantum dot-Bragg reflection multimode waveguide system[J]. ACS Photonics, 6, 2231-2237(2019).
[95] Joannopoulos J D, Johnson S G, Winn J N et al[M]. Photonic crystals(2011).
[96] Busch K, von Freymann G, Linden S et al. Periodic nanostructures for photonics[J]. Physics Reports, 444, 101-202(2007).
[97] Costa R, Melloni A, Martinelli M. Bandpass resonant filters in photonic-crystal waveguides[J]. IEEE Photonics Technology Letters, 15, 401-403(2003).
[98] Qiu M, Jaskorzynska B. Design of a channel drop filter in a two-dimensional triangular photonic crystal[J]. Applied Physics Letters, 83, 1074-1076(2003).
[99] Umemori K I, Kanamori Y, Hane K. Photonic crystal waveguide switch with a microelectromechanical actuator[J]. Applied Physics Letters, 89, 021102(2006).
[100] Mingaleev S F, Miroshnichenko A E, Kivshar Y S et al. All-optical switching, bistability, and slow-light transmission in photonic crystal waveguide-resonator structures[J]. Physical Review E, 74, 046603(2006).
[101] Fu Y L, Hu X Y, Gong Q H. Silicon photonic crystal all-optical logic gates[J]. Physics Letters A, 377, 329-333(2013).
[102] Rani P, Kalra Y[J]. Sinha R K. Realization of AND gate in Y shaped photonic crystal waveguide. Optics Communications, 298/299, 227-231(2013).
[103] Young A B. Thijssen A C T, Beggs D M, et al. Polarization engineering in photonic crystal waveguides for spin-photon entanglers[J]. Physical Review Letters, 115, 153901(2015).
[104] Lang B, Beggs D M, Young A B et al. Stability of polarization singularities in disordered photonic crystal waveguides[J]. Physical Review A, 92, 063819(2015).
[105] Söllner I, Mahmoodian S, Hansen S L et al. Deterministic photon-emitter coupling in chiral photonic circuits[J]. Nature Nanotechnology, 10, 775-778(2015).
[106] Xiao S, Wu S Y, Xie X et al. Position-dependent chiral coupling between single quantum dots and cross waveguides[J]. Applied Physics Letters, 118, 091106(2021).
[107] Xiao S, Wu S Y, Xie X et al. Chiral photonic circuits for deterministic spin transfer[J]. Laser & Photonics Reviews, 15, 2100009(2021).
Get Citation
Copy Citation Text
Shan Xiao, Xiulai Xu. On-Chip Chiral Nanophotonic Devices Based on Semiconductor Quantum Dots[J]. Acta Optica Sinica, 2022, 42(3): 0327009
Category: Quantum Optics
Received: Aug. 24, 2021
Accepted: Sep. 23, 2021
Published Online: Jan. 24, 2022
The Author Email: Xiulai Xu (xlxu@iphy.ac.cn)