Acta Physica Sinica, Volume. 69, Issue 12, 127706-1(2020)
Fig. 1. (a) Structure diagram of
Fig. 2. (a) Basic principle of photocatalytic water-splitting process; (b) photocatalytic reaction steps for hydrogen and oxygen production[33]
Fig. 3. Energy band structure diagram of the BiFeO3 thin film after (a) +8 V and (b) –8 V poling; (c) external quantum yield spectra of BiFeO 3 film before poling and after +8 V and –8 V poling; (d) photocurrent–potential characteristics of the photoelectrodes with different polarization states [24]
Fig. 4. (a) Mott-Schottky plots for the 50-nm-thick epitaxial BiFeO3 thin-film photoanodes with different crystallographic orientations, where the flat-band potentials are obtained from the intercepts of the extrapolated lines; (b) absorbance measurements for these three BiFeO3 thin films with incident light at 400−800 nm wavelength; (c) band positions for the epitaxial BiFeO3 thin-film photoanodes; (d) electrochemical impedance spectroscopy spectra of the BiFeO3 thin-film photoanodes[77]
Fig. 5. Energy band diagrams for BiFeO3 photoanodes in PEC water splitting cells: (a) Changes in the band structure of BiFeO3 thin films under different polarization states; (b) linear sweep voltammetry of 50-nm-thick (111)pc BiFeO3 thin-film photoanodes in different polarization states; (c) photocurrent density versus time curves for (001)pc and (111)pc BiFeO3 thin-film photoanodes with different polarization states under zero bias (0 V vs. Ag/AgCl)[61]
Fig. 6. (a) Schematic representation for the growth mechanism of Sn:TiO2@BiFeO3 nano rods; (b) photocatalysis performance of TiO2, Sn:TiO2 and BiFeO3@Sn:TiO2 nano rods. Schematic electronic band diagram of (c) positive poling BiFeO3 and (d) negative poling BiFeO3[89]
Fig. 7. (a) Electron energy levels of BiVO4/BiFeO3 photoanode and the structural representation; (b) the photocurrent density curves of three different structures of BiVO4/Co-Pi, BiVO4 and BiVO4/BiFeO3; (c) photocurrent density versus potential curves at three statuses of ferroelectric polarization; (d) long-term photostability of three photoanodes at 0.6 V (V vs. Ag/AgCl)[102]
Fig. 8. Schematic illumination and variations of the photocurrent density with applied voltage (vs. Ag/AgCl) in 1 mol/L Na2SO4 at pH 6.8 under chopped simulated sunlight illumination (AM1.5G) of SrTiO3/CaRuO3/Bi2FeCrO6 sample: (a) Before, (b) after negative (
Fig. 9. (a) Schematic of BaTiO3-Ag composites with the effect of free carrier reorganization on band structure and photoexcited carriers, and (b) photodecolorization profiles of RhB with different catalysts under solar simulator[43]; (c) schematic representation of the 500 nm-BaTiO3/67 nm-MoO3 heterostructure on glass substrate, and (d) its photodecolorization profiles of RhB under UV-visible and visible light (sun light)[44]; (e) schematic of photoinduced hole and electron migration in BaTiO3-CdS composites and photocatalytic hydrogen process under visible light (
Fig. 10. (a) Energy band diagram of nanowire photocatalytic reaction of TiO2@BaTiO3 nanowires; (b) photocurrent density versus potential curve of TiO2@BaTiO3 nanowires at three polarization statuses[5]; (c) scheme of the fabrication process of TiO2@BTO/Ag2O nanorod array, and (d) photocurrent-potential curves in the dark and under Xe lamp irradiation of the different photoanodes[66]
Fig. 11. (a) Schematic of energy band in thinner (001) PbTiO3 (PTO) with smaller built-in voltages (Δ
Fig. 12. (a) Band bending of FTO/NaNbO3 for negative polarized; (b) current-potential curves of photoanodes with different polarization conditions[64]; (c) band bending of PVDF/Cu/PVDF-NaNbO3 for negative polarized; (d) current density versus time curves of NaNbO3/PVDF films with different polarization conditions[126]
Fig. 13. (a) Schematic understanding of free carrier reorganization and photo-excited carrier separation in ferroelectric, pyroelectric and piezoelectric materials under the influence of ferroelectric, pyroelectric and piezoelectric effects respectively[140]; (b) degradation reaction kinetic rate constants (
Fig. 14. (a) Schematic illustration of photoinduced generation of an electron-hole pair in semiconductor that transfers to the surface for CO2 photoredox; (b) conduction band, valence band potentials, and band gap energies of various semiconductor photocatalysts relative to the redox potentials at pH 7 of compounds involved in CO2 reduction[158].
Fig. 15. (a) Schematic diagram of polarization-field enhanced separation of photogenerated charge carriers; (b) diagram for the band energy levels of SrBi4Ti4O15; (c) the corresponding rates over SrBi4Ti4O15, Bi4Ti3O12, P25 and BiOBr; (d) CH4 yield curves of SrBi4Ti4O15 with different annealing temperatures[164]
Fig. 16. (a) Dielectric response at 204 K of a CH3NH3PbI3 crystal, showing that
Fig. 17. (a) Schematic diagram of the water-splitting device based on CH3NH3PbI3 film; (b) generalized energy schematic of the perovskite tandem cell for water splitting; (c)
Fig. 18. (a) Schematic diagram of FTO/m-TiO2/CH3NH3PbI3/Spiro-MeOTAD/Au/Catalyst integrated photoelectrolysis device with perovskite photoelectrode; (b) photocurrent verus potential comparison diagram of perovskite photoanode with Ni catalyst and Ni catalyst under simulated light[68]; (c) energy and work function matching of FTO/PEDOT:PSS/CH3NH3PbI3/PCBM/PEIE/Ag; (d) photocurrent verus potential diagram of photocatalytic device switching[69]
Photocatalytic degradation of organic compounds using a variety of catalytic methods.
部分压电和铁电材料的光催化降解甲基橙染料或CO2的性能比较
Photocatalytic degradation of organic compounds using a variety of catalytic methods.
部分压电和铁电材料的光催化降解甲基橙染料或CO2的性能比较
|
Photoelectrochemical water splitting of ferroelectric materials in recent years, where ITO, FTO, SrTiO3, Nb-SrTiO3 and glass are substrate of films, PCBM is [6,6]-phenyl-C61-butyric acid methyl ester, PEIE is ethoxylated polyethylenimine, PEDOT:PSS is poly(3, 4-ethylenedioxythiophene) polystyrene sulfonate and FM is In0.51Bi0.325Sn0.165 as protective layer
近年部分铁电材料光电催化分解水的研究进展(这里ITO, FTO, SrTiO3, Nb-SrTiO3和glass是薄膜基片, PCBM是[6,6]-苯基C61-丁酸甲酯, PEIE是乙氧基化聚乙烯亚胺; PEDOT:PSS是聚苯乙烯磺酸盐(3, 4-乙撑二氧噻吩))
Photoelectrochemical water splitting of ferroelectric materials in recent years, where ITO, FTO, SrTiO3, Nb-SrTiO3 and glass are substrate of films, PCBM is [6,6]-phenyl-C61-butyric acid methyl ester, PEIE is ethoxylated polyethylenimine, PEDOT:PSS is poly(3, 4-ethylenedioxythiophene) polystyrene sulfonate and FM is In0.51Bi0.325Sn0.165 as protective layer
近年部分铁电材料光电催化分解水的研究进展(这里ITO, FTO, SrTiO3, Nb-SrTiO3和glass是薄膜基片, PCBM是[6,6]-苯基C61-丁酸甲酯, PEIE是乙氧基化聚乙烯亚胺; PEDOT:PSS是聚苯乙烯磺酸盐(3, 4-乙撑二氧噻吩))
|
Get Citation
Copy Citation Text
Zong-Yang Cui, Zhong-Shuai Xie, Yao-Jin Wang, Guo-Liang Yuan, Jun-Ming Liu.
Received: Feb. 25, 2020
Accepted: --
Published Online: Dec. 8, 2020
The Author Email: