Acta Physica Sinica, Volume. 69, Issue 12, 127706-1(2020)

Research progress and prospects of photocatalytic devices with perovskite ferroelectric semiconductors

Zong-Yang Cui1, Zhong-Shuai Xie1, Yao-Jin Wang1, Guo-Liang Yuan1、*, and Jun-Ming Liu2
Author Affiliations
  • 1School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
  • 2National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing 210093, China
  • show less
    Figures & Tables(20)
    (a) Structure diagram of ABX3 type perovskite ferroelectric material; (b) P-E hysteresis loop. (c) photocatalysis, piezocatalysis and pyrocatalysis of a ferroelectric semiconductor and their application
    (a) Basic principle of photocatalytic water-splitting process; (b) photocatalytic reaction steps for hydrogen and oxygen production[33]
    Energy band structure diagram of the BiFeO3 thin film after (a) +8 V and (b) –8 V poling; (c) external quantum yield spectra of BiFeO 3 film before poling and after +8 V and –8 V poling; (d) photocurrent–potential characteristics of the photoelectrodes with different polarization states [24]
    (a) Mott-Schottky plots for the 50-nm-thick epitaxial BiFeO3 thin-film photoanodes with different crystallographic orientations, where the flat-band potentials are obtained from the intercepts of the extrapolated lines; (b) absorbance measurements for these three BiFeO3 thin films with incident light at 400−800 nm wavelength; (c) band positions for the epitaxial BiFeO3 thin-film photoanodes; (d) electrochemical impedance spectroscopy spectra of the BiFeO3 thin-film photoanodes[77]
    Energy band diagrams for BiFeO3 photoanodes in PEC water splitting cells: (a) Changes in the band structure of BiFeO3 thin films under different polarization states; (b) linear sweep voltammetry of 50-nm-thick (111)pc BiFeO3 thin-film photoanodes in different polarization states; (c) photocurrent density versus time curves for (001)pc and (111)pc BiFeO3 thin-film photoanodes with different polarization states under zero bias (0 V vs. Ag/AgCl)[61]
    (a) Schematic representation for the growth mechanism of Sn:TiO2@BiFeO3 nano rods; (b) photocatalysis performance of TiO2, Sn:TiO2 and BiFeO3@Sn:TiO2 nano rods. Schematic electronic band diagram of (c) positive poling BiFeO3 and (d) negative poling BiFeO3[89]
    (a) Electron energy levels of BiVO4/BiFeO3 photoanode and the structural representation; (b) the photocurrent density curves of three different structures of BiVO4/Co-Pi, BiVO4 and BiVO4/BiFeO3; (c) photocurrent density versus potential curves at three statuses of ferroelectric polarization; (d) long-term photostability of three photoanodes at 0.6 V (V vs. Ag/AgCl)[102]
    Schematic illumination and variations of the photocurrent density with applied voltage (vs. Ag/AgCl) in 1 mol/L Na2SO4 at pH 6.8 under chopped simulated sunlight illumination (AM1.5G) of SrTiO3/CaRuO3/Bi2FeCrO6 sample: (a) Before, (b) after negative (Pup, –25 V) and (c) and positive poling ( Pdown, 25 V)[15]; (d) schematic diagram of the experimental setup and (e) photocurent versus potential (vs. RHE) curves of SrTiO3/SrRuO3/Bi2FeCrO6/NiO[62]
    (a) Schematic of BaTiO3-Ag composites with the effect of free carrier reorganization on band structure and photoexcited carriers, and (b) photodecolorization profiles of RhB with different catalysts under solar simulator[43]; (c) schematic representation of the 500 nm-BaTiO3/67 nm-MoO3 heterostructure on glass substrate, and (d) its photodecolorization profiles of RhB under UV-visible and visible light (sun light)[44]; (e) schematic of photoinduced hole and electron migration in BaTiO3-CdS composites and photocatalytic hydrogen process under visible light (λ > 400 nm), and (f) its photoelectrochemical properties of pristine CdS, pure BaTiO 3 and BaTiO3-CdS (wt 20%) composite[118]
    (a) Energy band diagram of nanowire photocatalytic reaction of TiO2@BaTiO3 nanowires; (b) photocurrent density versus potential curve of TiO2@BaTiO3 nanowires at three polarization statuses[5]; (c) scheme of the fabrication process of TiO2@BTO/Ag2O nanorod array, and (d) photocurrent-potential curves in the dark and under Xe lamp irradiation of the different photoanodes[66]
    (a) Schematic of energy band in thinner (001) PbTiO3 (PTO) with smaller built-in voltages (ΔV) and thicker nanosheet with larger ΔV; (b) correlation between surface photovoltaic value measured by Kelvin probe force microscopy and nanosheet thickness[124]; (c) the reaction rate of blank control and photodegradation of MB under visible light (λ ≥ 420 nm) irradiation with (001) PTO, TiO2 and heterostructured TiO2/PTO composites; (d) H2 evolution rate of water splitting under visible light (λ ≥ 420 nm) irradiation[46]
    (a) Band bending of FTO/NaNbO3 for negative polarized; (b) current-potential curves of photoanodes with different polarization conditions[64]; (c) band bending of PVDF/Cu/PVDF-NaNbO3 for negative polarized; (d) current density versus time curves of NaNbO3/PVDF films with different polarization conditions[126]
    (a) Schematic understanding of free carrier reorganization and photo-excited carrier separation in ferroelectric, pyroelectric and piezoelectric materials under the influence of ferroelectric, pyroelectric and piezoelectric effects respectively[140]; (b) degradation reaction kinetic rate constants (Kobs) of methyl orange over BCT-0 and BCT-0.2 under UV light, ultrasonic vibration and the simultaneous assistance of ultrasonic vibration and UV light[150]; (c) Kobs (i.e. k) of the RhB solution over the KNbO3 nanosheet (NS) and nanotube (NC) under different conditions[50]; (d) the RhB dye solution degradation activity and (e) the amount of hydrogen evolution of ZnSnO3–x nanowires as a function of time under applying light and ultrasonic vibration simultaneously[52]
    (a) Schematic illustration of photoinduced generation of an electron-hole pair in semiconductor that transfers to the surface for CO2 photoredox; (b) conduction band, valence band potentials, and band gap energies of various semiconductor photocatalysts relative to the redox potentials at pH 7 of compounds involved in CO2 reduction[158].
    (a) Schematic diagram of polarization-field enhanced separation of photogenerated charge carriers; (b) diagram for the band energy levels of SrBi4Ti4O15; (c) the corresponding rates over SrBi4Ti4O15, Bi4Ti3O12, P25 and BiOBr; (d) CH4 yield curves of SrBi4Ti4O15 with different annealing temperatures[164]
    (a) Dielectric response at 204 K of a CH3NH3PbI3 crystal, showing that εre dominates the dielectric response; (b) P-E hysteresis loop obtained from integration of εim over applied electric field[174]
    (a) Schematic diagram of the water-splitting device based on CH3NH3PbI3 film; (b) generalized energy schematic of the perovskite tandem cell for water splitting; (c) J-V curves of the perovskite tandem cell, and the NiFe/Ni foam electrodes in a two-electrode configuration; (d) current density-time curve of the integrated water-splitting device[71]
    (a) Schematic diagram of FTO/m-TiO2/CH3NH3PbI3/Spiro-MeOTAD/Au/Catalyst integrated photoelectrolysis device with perovskite photoelectrode; (b) photocurrent verus potential comparison diagram of perovskite photoanode with Ni catalyst and Ni catalyst under simulated light[68]; (c) energy and work function matching of FTO/PEDOT:PSS/CH3NH3PbI3/PCBM/PEIE/Ag; (d) photocurrent verus potential diagram of photocatalytic device switching[69]
    • Table 1.

      Photocatalytic degradation of organic compounds using a variety of catalytic methods.

      部分压电和铁电材料的光催化降解甲基橙染料或CO2的性能比较

      View table
      View in Article

      Table 1.

      Photocatalytic degradation of organic compounds using a variety of catalytic methods.

      部分压电和铁电材料的光催化降解甲基橙染料或CO2的性能比较

      材料及结构 (铁电材料为粗体) 铁电带隙/eV激励源催化降解物催化活性污染性稳定性(性能/时间)文献
      BiFeO3纳米粉体 2.18紫外可见光甲基橙8 h降解90%[14]
      FTO玻璃/BiVO4/BiFeO3/CuInS22.1—2.7可见光对硝基苯酚Kobs = 0.02 min–1相对稳定/5次循环[56]
      NaNbO3纳米棒 3.3光+超声振动甲基蓝98%/3次循环[42]
      BaTiO3@Ag纳米颗粒 3.2罗丹明BKobs = 0.087 min–1[43]
      BaTiO3/MoO33.2紫外-可见光罗丹明B60 min降解86%95%/5次循环[44]
      BaTiO3/Ag2O纳米棒 3.2紫外光+ 超声振动罗丹明B (c = 15 mg·L–1 ) Kobs = 0.031 min–150%/5次循环[18]
      BaTiO3@非晶BaTiO3–x3.2可见光甲基蓝5 h降解62.4%97%/5次循环[45]
      PbTiO3/TiO2纳米片 3.6氙灯可见光甲基蓝Kobs = 0.057 min–1132.6 μmol·h–1 ·g–1 产H2[46]
      KNbO3/g-C3N43.28氙灯可见光180 μmol·h–1 ·g–1 产H295%/4次循环[47]
      {001} Bi3TiNbO9纳米片 3.3氙灯可见光342.6 μmol·h–1 ·g–1 产H2[48]
      KNbO3颗粒 3.28罗丹明BKobs = 0.317 min–1[49]
      KNbO3纳米片 3.07可见光+超声振动罗丹明BKobs = 0.022 min–1 2 h降解92.6% [50]
      FTO玻璃/ZnSnO3纳米线 3.7光+压力甲基蓝Kobs = 0.007 min–190%/1 h[51]
      FTO/ZnSnO3–x纳米线 2.4—3.7光、超声振动、 光和超声振动 3562, 3453, 3882 μmol·h–1 ·g–1 产H2在振动下相对稳定/7 h[52]
      FTO/Zn1–xSnO3 纳米线 2.4—3.7紫外光+振动甲基蓝Kobs = 0.015 min–1[53]
      PZT@TiO2核壳结构 3.6光+搅拌罗丹明B80 min完全降解[54]
      BiOI-BaTiO3纳米粒子 3.2可见光甲基橙90 min降解95.4%[55]
      ZnO纳米线压电3.37光+摇摆甲基蓝Kobs = 0.025 min–199%/3次循环[57]
      ZnO纳米片/TiO2纳米颗粒 压电3.37可见光甲基橙Kobs = 0.038 min–1相对稳定/11 h[58]
      Ag-ZnO纳米线压电3.37光+弯折罗丹明BKobs = 0.052 min–190%/8次循环[59]
    • Table 2.

      Photoelectrochemical water splitting of ferroelectric materials in recent years, where ITO, FTO, SrTiO3, Nb-SrTiO3 and glass are substrate of films, PCBM is [6,6]-phenyl-C61-butyric acid methyl ester, PEIE is ethoxylated polyethylenimine, PEDOT:PSS is poly(3, 4-ethylenedioxythiophene) polystyrene sulfonate and FM is In0.51Bi0.325Sn0.165 as protective layer

      近年部分铁电材料光电催化分解水的研究进展(这里ITO, FTO, SrTiO3, Nb-SrTiO3和glass是薄膜基片, PCBM是[6,6]-苯基C61-丁酸甲酯, PEIE是乙氧基化聚乙烯亚胺; PEDOT:PSS是聚苯乙烯磺酸盐(3, 4-乙撑二氧噻吩))

      View table
      View in Article

      Table 2.

      Photoelectrochemical water splitting of ferroelectric materials in recent years, where ITO, FTO, SrTiO3, Nb-SrTiO3 and glass are substrate of films, PCBM is [6,6]-phenyl-C61-butyric acid methyl ester, PEIE is ethoxylated polyethylenimine, PEDOT:PSS is poly(3, 4-ethylenedioxythiophene) polystyrene sulfonate and FM is In0.51Bi0.325Sn0.165 as protective layer

      近年部分铁电材料光电催化分解水的研究进展(这里ITO, FTO, SrTiO3, Nb-SrTiO3和glass是薄膜基片, PCBM是[6,6]-苯基C61-丁酸甲酯, PEIE是乙氧基化聚乙烯亚胺; PEDOT:PSS是聚苯乙烯磺酸盐(3, 4-乙撑二氧噻吩))

      材料和结构 (铁电材料为粗体) 铁电PCE/%带隙/eV电解液光源工作电极电势光电流密度/ mA·cm–2污染性稳定性 (性能/时间) 文献
      ITO/BiFeO3/Au 2.16—2.70.1 mol/L KClAM1.5G0 V vs. Ag/AgCl 0.05[60]
      SrTiO3/SrRuO3/(111)BiFeO32.16—2.70.5 mol/L Na2SO4AM1.5G0 V vs. Ag/AgCl0.08100%/700 s[61]
      SrTiO3/CaRuO3/(111) Bi2FeCrO61.9—2.11 mol/L Na2SO4AM1.5G0 V vs. Ag/AgCl–2.02[15]
      SrTiO3/SrRuO3/Bi2FeCrO6/ NiO 1.8— –2.71 mol/L Na2SO4AM1.5G1.2 V vs. RHE0.995%/7 h[62]
      TiO2@PbTiO3 核壳结构 3.6氙灯100 mW·cm–2132 μmol·g–1 H2[63]
      FTO/NaNbO33.370.5 mol/L Na2SO4AM1.5G1 V vs. Ag/AgCl0.51[64]
      ITO/KNbO3纳米片 2.860.5 mol/L Na2SO4AM1.5G0 V vs. Ag/AgCl0.82[50]
      (001) LiNbO3单晶 3.26mol/LK3PO4AM1.5G1.23 V vs. RHE0.15[65]
      FTO/TiO2@BaTiO3/Ag2O 3.21 mol/LNaOHAM1.5G0.8 V vs. Ag/AgCl1.897%/1 h[66]
      FTO/TiO2@SrTiO3(10 nm四方铁电相) 3.21 mol/LNaOHAM1.5G1.23 V vs. RHE1.43[67]
      Glass/FTO/m-TiO2/CH3NH3PbI3/ Spiro-MeOTAD/Au/Ni 14.41.5AM1.5G1.0 V vs. SHE17.466%/1 h[68]
      FTO/PEDOT:PSS/CH3NH3PbI3/ PCBM/PEIE/Ag/FM 7.71.5AM1.5G1.2 V vs. RHE15.080%/1 h[69]
      ITO/NiO/CH3NH3PbI3/ PCBM/Ag/Ti/Pt 16.11.50.5 mol/L H2SO4AM1.5G1.2 V vs. RHE1870%/12 h[70]
      CH3NH3PbI3 solar cells, a cell for H2O splitting 15.71.5AM1.5G1075%/10 h[71]
      FTO/BiVO4/black-phosphorene/ NiOOH 2.4—2.50.5 mol/L KH2PO4 K2HPO4AM1.5G1.23 V vs. RHE4.4899%/60 h[72]
      FTO/H:TiO21.633.21 mol/LNaOHAM1.5G–0.6 V vs. Ag/AgCl1.9794%/28 h[73]
    Tools

    Get Citation

    Copy Citation Text

    Zong-Yang Cui, Zhong-Shuai Xie, Yao-Jin Wang, Guo-Liang Yuan, Jun-Ming Liu. Research progress and prospects of photocatalytic devices with perovskite ferroelectric semiconductors[J]. Acta Physica Sinica, 2020, 69(12): 127706-1

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Feb. 25, 2020

    Accepted: --

    Published Online: Dec. 8, 2020

    The Author Email:

    DOI:10.7498/aps.69.20200287

    Topics