Chinese Journal of Lasers, Volume. 48, Issue 19, 1918006(2021)

Nonlinear Modulation of Electromagnetically Induced Transparency Based on Graphene-Metal Hybrid Metamaterial Structure

Shanshan Liu1, Quan Li1、*, Ziyu Yang1, Guangda Lu2, and Shuang Wang1
Author Affiliations
  • 1School of Electronic Engineering, Tianjin University of Technology and Education, Tianjin 300222, China
  • 2Tianjin Key Laboratory of Information Sensing and Intelligent Control, Tianjin University of Technology and Education, Tianjin 300222, China
  • show less
    References(36)

    [1] Harris S E. Electromagnetically induced transparency[J]. Physics Today, 50, 36-42(1997).

    [2] Shuang Z, Genov D A, Wang Y et al. Plasmon-induced transparency in metamaterials[J]. Physical Review Letters, 101, 218-221(2008).

    [3] Zhao X L, Yuan C, Zhu L et al. Graphene-based tunable terahertz plasmon-induced transparency metamaterial[J]. Nanoscale, 8, 15273-15280(2016).

    [4] Cao Y Y, Li Y, Liu Y Z et al. Tunable electromagnetically induced transparency based on T-shaped graphene metamaterials[J]. Journal of Terahertz Science and Electronic Information Technology, 15, 192-197(2017).

    [5] Xiao S Y, Wang T, Liu T T et al. Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials[J]. Carbon, 126, 271-278(2018).

    [6] Li G S, Yan F P, Wang W et al. Analysis of multiband and broadband electromagnetically induced transparency based on three-dimensional coupling[J]. Laser & Optoelectronics Progress, 55, 121601(2018).

    [7] Chen H, Zhang H Y, Liu M D et al. Tunable multiple plasmon-induced transparency in three-dimensional Dirac semimetal metamaterials[J]. Optics Communications, 423, 57-62(2018).

    [8] Wang Y, Leng Y B, Wang L et al. Tunable grapheme amplitude based broadband electromagnetically-induced-transparency-like metamaterial[J]. Acta Physica Sinica, 67, 097801(2018).

    [9] Zhou J H, Zhang C X, Liu Q R et al. Controllable all-optical modulation speed in hybrid silicon-germanium devices utilizing the electromagnetically induced transparency effect[J]. Nanophotonics, 9, 2797-2807(2020).

    [10] Zhang M, Yan F P, Du X M et al. Design and analysis of electromagnetically induced transparency in THz multiband[J]. Chinese Journal of Lasers, 48, 0314001(2021).

    [11] Sensale-Rodriguez B, Yan R, Kelly M M et al. Broadband graphene terahertz modulators enabled by intraband transitions[J]. Nature Communications, 3, 780(2012).

    [13] Zhou Y X, Huang Y Y, Jin Y P et al. Terahertz properties of graphene and graphene-based terahertz devices[J]. Chinese Journal of Lasers, 46, 0614011(2019).

    [15] Kindness S J, Almond N W, Wei B et al. Active control of electromagnetically induced transparency in a terahertz metamaterial array with graphene for continuous resonance frequency tuning[J]. Advanced Optical Materials, 6, 1800570(2018).

    [16] Low T, Avouris P. Graphene plasmonics for terahertz to mid-infrared applications[J]. ACS Nano, 8, 1086-1101(2014).

    [17] Li Q, Tian Z, Zhang X Q et al. Dual control of active graphene-silicon hybrid metamaterial devices[J]. Carbon, 90, 146-153(2015).

    [18] Li H, Yu J, Chen Z. Broadband tunable terahertz absorber based on hybrid graphene-vanadium dioxide metamaterials[J]. Chinese Journal of Lasers, 47, 0903001(2020).

    [19] Kim T T, Kim H, Kenney M et al. Amplitude modulation of anomalously refracted terahertz waves with gated-graphene metasurfaces[J]. Advanced Optical Materials, 6, 1700507(2018).

    [20] Li Q, Wang S, Chen T. Nonlinear modulation of plasmonic resonances in graphene-integrated triangular dimers at terahertz frequencies[J]. Materials, 12, 2466-2476(2019).

    [21] Dong H M. Electrically-controlled nonlinear terahertz optical properties of graphene[J]. Acta Physica Sinica, 62, 237804(2013).

    [22] Paul M J, Chang Y C, Thompson Z J et al. High-field terahertz response of graphene[J]. New Journal of Physics, 15, 085019(2013).

    [23] Suess R J, Winnerl S, Schneider H et al. Role of transient reflection in graphene nonlinear infrared optics[J]. Acs Photonics, 3, 1069-1075(2016).

    [24] Nakajima M, Kurihara T, Tadokoro Y et al. Application of terahertz field enhancement effect in metal microstructures[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 37, 1199-1212(2016).

    [25] Sun X D, Zhang S W, Wu F et al. Surface electromagnetic field enhancement of sub-wavelength metallic groove array[J]. Chinese Journal of Lasers, 44, 1113001(2017).

    [26] Zhang Y B, Tan Y W, Stormer H L et al. Experimental observation of the quantum Hall effect and Berry's phase in graphene[J]. Nature, 438, 201-204(2005).

    [27] Zhang J, Zhu Z H, Liu W et al. Towards photodetection with high efficiency and tunable spectral selectivity: graphene plasmonics for light trapping and absorption engineering[J]. Nanoscale, 7, 13530-13536(2015).

    [28] Hafez H A, Lévesque P L, Al-Naib I et al. Intense terahertz field effects on photoexcited carrier dynamics in gated graphene[J]. Applied Physics Letters, 107, 251903(2015).

    [29] Hwang H Y, Brandt N C, Farhat H et al. Nonlinear THz conductivity dynamics in P-type CVD-grown graphene[J]. The Journal of Physical Chemistry B, 117, 15819-15824(2013).

    [30] Li S X, Nugraha P S, Su X Q et al. Terahertz electric field modulated mode coupling in graphene-metal hybrid metamaterials[J]. Optics Express, 27, 2317-2326(2019).

    [31] Liu N, Langguth L, Weiss T et al. Plasmonic analogue of electromagnetically induced transparency at the drude damping limit[J]. Nature Materials, 8, 758-762(2009).

    [32] Luo W W, Cai W, Xiang Y X et al. Flexible modulation of plasmon-induced transparency in a strongly coupled graphene grating-sheet system[J]. Optics Express, 24, 5784-5793(2016).

    [33] Ovchinnikov A V, Chefonov O V, Mishina E D et al. Second harmonic generation in the bulk of silicon induced by an electric field of a high power terahertz pulse[J]. Scientific Reports, 9, 9753(2019).

    [34] Tarekegne A T, Iwaszczuk K, Zalkovskij M et al. Impact ionization in high resistivity silicon induced by an intense terahertz field enhanced by an antenna array[J]. New Journal of Physics, 17, 043002(2015).

    [35] Wang J, Hu X. Recent advances in graphene-assisted nonlinear optical signal processing[J]. Journal of Nanotechnology, 2016, 1-18(2016).

    [36] Chen H M, Su J, Wang J L et al. Optically-controlled high-speed terahertz wave modulator based on nonlinear photonic crystals[J]. Optics Express, 19, 3599-3603(2011).

    Tools

    Get Citation

    Copy Citation Text

    Shanshan Liu, Quan Li, Ziyu Yang, Guangda Lu, Shuang Wang. Nonlinear Modulation of Electromagnetically Induced Transparency Based on Graphene-Metal Hybrid Metamaterial Structure[J]. Chinese Journal of Lasers, 2021, 48(19): 1918006

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Jun. 16, 2021

    Accepted: Aug. 3, 2021

    Published Online: Sep. 14, 2021

    The Author Email: Li Quan (quanli@tute.edu.cn)

    DOI:10.3788/CJL202148.1918006

    Topics