Journal of Infrared and Millimeter Waves, Volume. 44, Issue 2, 275(2025)

BDMFuse: Multi-scale network fusion for infrared and visible images based on base and detail features

Hai-Ping SI1, Wen-Rui ZHAO1, Ting-Ting LI1, Fei-Tao LI1, Bacao FERNADO2, Chang-Xia SUN1, and Yan-Ling LI1、*
Author Affiliations
  • 1College of Information and Management Science,Henan Agricultural University,Zhengzhou 450046,China
  • 2NOVA Information Management School,Universidade Nova de Lisboa,Lisboa1070-312,Portugal
  • show less
    Figures & Tables(15)
    The overall network of BDMFuse: (a) overall structure of the training phase; (b) overall structure of the testing phase
    Base encoder schematic
    Detail encoder schematic
    Compensation encoder schematic
    Decoder schematic: (a) BDC-fusion; (b) multi-fusion
    Fusion module
    Attention strategy
    Fusion image of ablation experiments: (a) IR; (b) VIS; (c) SE-Attention; (d) ECA-Attention; (e) No-Attention; (f) No-Comp Encoder; (g) No-Fusion Module; (h) No-Strategy; (i) No-Strategy & No-Multi-scale; (j) proposed
    Fusion image of TNO: (a) IR; (b) VIS; (c) DenseFuse; (d) RFN-Nest; (e) FusionGAN; (f) U2Fusion; (g) CSF; (h) SEDR; (i) SwinFusion; (j) SeAFusion; (k) CDDFuse; (l) proposed
    Fusion image of RoadScene: (a) IR; (b) VIS; (c) DenseFuse; (d) RFN-Nest; (e) FusionGAN; (f) U2Fusion; (g) CSF; (h) SEDR; (i) SwinFusion; (j) SeAFusion; (k) CDDFuse; (l) proposed
    Fusion image of LLVIP: (a) IR; (b) VIS; (c) DenseFuse; (d) RFN-Nest; (e) FusionGAN; (f) U2Fusion; (g) CSF; (h) SEDR; (i) SwinFusion; (j) SeAFusion; (k) CDDFuse; (l) (Our proposed)
    • Table 1. Average quality evaluation metrics for ablation experiments

      View table
      View in Article

      Table 1. Average quality evaluation metrics for ablation experiments

      ENMISDAGVIFSCDMS_SSIM
      SE-Attention6.850113.700134.73153.74150.96121.81920.9416
      ECA-Attention6.950413.900840.67163.55030.95481.65140.9148
      No-Attention7.177414.354740.25764.20961.36051.88010.9306
      No-Comp Encoder6.872813.745638.00532.96820.92191.80600.9403
      No-Fusion Module7.212914.425940.82633.70761.27271.88700.9277
      No-Strategy7.029114.058137.98053.36661.08511.89350.9511

      No-Strategy&

      No-Multi-scale

      6.591013.181935.04113.27850.80631.61110.9216
      Proposed7.252514.505043.61834.16271.41281.87150.9207
    • Table 2. Average quality evaluation metrics for 40 pairs of TNO fused images

      View table
      View in Article

      Table 2. Average quality evaluation metrics for 40 pairs of TNO fused images

      ENMISDAGVIFSCDMS_SSIM
      DenseFuse6.793313.586733.00553.89581.11411.89510.9379
      RFN-Nest6.988913.977735.20262.86191.12181.87100.9138
      FusionGAN6.507313.014726.44782.42760.74081.13390.7511
      U2Fusion6.474512.948924.98583.84140.73711.65420.9433
      CSF6.929513.859134.23423.85651.22211.85030.9190
      SEDR6.879513.759039.05274.14911.55461.85540.8946
      SwinFusion6.615613.231131.03393.49710.72281.71470.8992
      SeAFusion7.147414.294939.91005.61621.73691.73230.8553
      CDDFuse7.058214.116439.17515.21351.39761.79660.8795
      Proposed7.354414.708844.58085.99071.82741.87840.8935
    • Table 3. Average quality evaluation metrics for 100 pairs of RoadScene fused images

      View table
      View in Article

      Table 3. Average quality evaluation metrics for 100 pairs of RoadScene fused images

      ENMISDAGVIFSCDMS_SSIM
      DenseFuse7.268414.536843.16794.59790.65041.65520.9220
      RFN-Nest7.349214.698446.10853.16680.60911.68370.8671
      FusionGAN7.054014.107939.06453.22460.48051.04960.7547
      U2Fusion7.081514.162937.84725.25140.63381.38660.9148
      CSF7.425714.851447.98285.02410.79521.72820.9261
      SEDR7.449914.899949.35814.93220.82861.69780.9005
      SwinFusion6.971213.942445.16344.33120.72751.57720.8470
      SeAFusion7.511715.023456.11196.87371.09491.67320.8786
      CDDFuse7.500315.000756.43316.50831.11201.71050.8740
      Proposed7.562315.124653.10006.55061.03591.77660.9353
    • Table 4. Average quality evaluation metrics for 100 pairs of LLVIP fused images

      View table
      View in Article

      Table 4. Average quality evaluation metrics for 100 pairs of LLVIP fused images

      ENMISDAGVIFSCDMS_SSIM
      DenseFuse6.974013.948036.77082.86410.46171.38350.9224
      RFN-Nest7.002814.005537.89192.24450.42161.41540.8981
      FusionGAN6.415312.830626.15402.01020.27460.75210.7865
      U2Fusion6.653113.306234.96593.33910.52831.27550.9098
      CSF6.828313.656635.37732.79600.45641.36210.9109
      SEDR6.887713.779536.54302.63190.44951.25460.8834
      SwinFusion7.384414.768850.81044.20640.90871.58870.9451
      SeAFusion7.419314.838650.44684.18980.90621.62590.9435
      CDDFuse7.313414.626748.34503.80520.81711.58890.9337
      Proposed7.539815.079552.94153.84640.98891.70710.9250
    Tools

    Get Citation

    Copy Citation Text

    Hai-Ping SI, Wen-Rui ZHAO, Ting-Ting LI, Fei-Tao LI, Bacao FERNADO, Chang-Xia SUN, Yan-Ling LI. BDMFuse: Multi-scale network fusion for infrared and visible images based on base and detail features[J]. Journal of Infrared and Millimeter Waves, 2025, 44(2): 275

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Interdisciplinary Research on Infrared Science

    Received: Jul. 25, 2024

    Accepted: --

    Published Online: Mar. 14, 2025

    The Author Email: Yan-Ling LI (lyl_lingling@163.com)

    DOI:10.11972/j.issn.1001-9014.2025.02.015

    Topics