Laser & Optoelectronics Progress, Volume. 51, Issue 9, 91001(2014)

Kalman Partule Fitter Algorithm for Moving Target Tracking Based on the Complex Dynamic Scene

Liao Yiqi*, Ren Kan, Gu Guohua, Qian Weixian, and Xu Fuyuan
Author Affiliations
  • [in Chinese]
  • show less
    References(11)

    [1] [1] Kalman R E. A new approach to linear filtering and prediction problems [J]. Journal of Basic Engineering, 1960, 82(1): 35-45.

    [3] [3] Yang C, Duraiswami R, Davis L. Efficient mean- shift tracking via a new similarity measure [C]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005. 1: 176-183.

    [4] [4] Han Lei, Guo Xiaojin, Qi Wei, et al.. Improved particle algorithm [J]. Video Engineering, 2012, 36(7): 16-19.

    [6] [6] Wang Chaohui, Xu Yibing, Xu Yawei. Research on memory attenuation UKF particle filter algorithm [J]. Microelectronics & Computer, 2012, 29(8): 50-52.

    [11] [11] Druckmüller M. Phase correlation method for the alignment of total solar eclipse images [J]. The Astrophysical Journal, 2009, 706(2): 1605-1608.

    CLP Journals

    [1] Qiu Chunchun, Li Qingwu, Wang Tian, Cheng Haisu. An Improved IVT Algorithm for Object Tracking[J]. Laser & Optoelectronics Progress, 2016, 53(1): 11002

    Tools

    Get Citation

    Copy Citation Text

    Liao Yiqi, Ren Kan, Gu Guohua, Qian Weixian, Xu Fuyuan. Kalman Partule Fitter Algorithm for Moving Target Tracking Based on the Complex Dynamic Scene[J]. Laser & Optoelectronics Progress, 2014, 51(9): 91001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Apr. 4, 2014

    Accepted: --

    Published Online: Aug. 20, 2014

    The Author Email: Liao Yiqi (124486064@qq.com)

    DOI:10.3788/lop51.091001

    Topics