Laser & Optoelectronics Progress, Volume. 60, Issue 5, 0531001(2023)

Ultraviolet Narrow Band Antireflection of Fe Nanoparticles Embedded in MgO Films

Jinjing Fang1,3,4, Linhong Cao1,3,4、**, Jian Yu5、***, Jin Wang1,3,4, Yajun Fu1,3,4, Wanting Lan1,3,4, Jingsong Zhang1,3,4, and Weidong Wu2,3,4、*
Author Affiliations
  • 1School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621000, Sichuan, China
  • 2Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621900, Sichuan, China
  • 3Sichuan Civil-Military Integration Institute, Mianyang 621000, Sichuan, China
  • 4Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, Mianyang 621000, Sichuan, China
  • 5Research Center of Advanced Material Testing Technology, Shenzhen Technology University, Shenzhen 518118, Guangdong, China
  • show less
    References(46)

    [1] Liu C. Study on high quality surface protection of single crystal MgO polishing substrate[D], 1-15(2007).

    [2] Wang J. The electronic structure and optical characteristics of magnesium oxide crystals[D], 1-15(2016).

    [3] Liu L H, Morita K, Suzuki T S et al. Synthesis of highly-infrared transparent Y2O3-MgO nanocomposites by colloidal technique and SPS[J]. Ceramics International, 46, 13669-13676(2020).

    [4] Andrushchak A, Buryy O, Andrushchak N et al. General method of extreme surfaces for geometry optimization of the linear electro-optic effect on an example of LiNbO3∶MgO crystals[J]. Applied Optics, 56, 6255-6262(2017).

    [5] Abbasloo M, Shokrollahi H, Alhaji A. Slip-casting process of MgO-Y2O3 nanocomposite: investigation of powder synthesis method[J]. Materials Chemistry and Physics, 254, 123387(2020).

    [6] Lee J W, Ye B U, Kim D Y et al. ZnO nanowire-based antireflective coatings with double-nanotextured surfaces[J]. ACS Applied Materials & Interfaces, 6, 1375-1379(2014).

    [7] Permin D A, Boldin M S, Belyaev A V et al. IR-transparent MgO-Gd2O3 composite ceramics produced by self-propagating high-temperature synthesis and spark plasma sintering[J]. Journal of Advanced Ceramics, 10, 237-246(2021).

    [8] Wang M J, Wang X M, Yin H B et al. Controllable fabrication of a super broadband antireflection film: Gd∶MgO nanoparticles composite film by pulsed laser deposition method[J]. Vacuum, 190, 110310(2021).

    [9] Heo S, Cho E, Lee H I et al. Band gap and defect states of MgO thin films investigated using reflection electron energy loss spectroscopy[J]. AIP Advances, 5, 077167(2015).

    [10] Zhang Y G, He H Y, Pan B C. Structural features and electronic properties of MgO nanosheets and nanobelts[J]. The Journal of Physical Chemistry C, 116, 23130-23135(2012).

    [11] Tlili M, Nefzi C, Alhalaili B et al. Synthesis and characterization of MgO thin films obtained by spray technique for optoelectronic applications[J]. Nanomaterials, 11, 3076(2021).

    [12] Fang C L, Yang Z T, Zhang J et al. Biomimetic diodon-skin nanothorn polymer antireflection film for solar cell applications[J]. Solar Energy Materials and Solar Cells, 206, 110305(2020).

    [13] Kim M, Kang T W, Kim S H et al. Antireflective, self-cleaning and protective film by continuous sputtering of a plasma polymer on inorganic multilayer for perovskite solar cells application[J]. Solar Energy Materials and Solar Cells, 191, 55-61(2019).

    [14] Tan G J, Lee J H, Lan Y H et al. Broadband antireflection film with moth-eye-like structure for flexible display applications[J]. Optica, 4, 678-683(2017).

    [15] Ebbesen T W, Lezec H J, Ghaemi H F et al. Extraordinary optical transmission through sub-wavelength hole arrays[J]. Nature, 391, 667-669(1998).

    [16] Ye X, Jiang X D, Xiao L et al. Transmission of silica sub-wavelength nano-microstructure[J]. High Power Laser and Particle Beams, 22, 1987-1990(2010).

    [17] Badawi A, Ahmed E M, Mostafa N Y et al. Enhancement of the optical and mechanical properties of chitosan using Fe2O3 nanoparticles[J]. Journal of Materials Science: Materials in Electronics, 28, 10877-10884(2017).

    [18] Singh B, Shabat M M, Schaadt D M. Wide angle antireflection in metal nanoparticles embedded in a dielectric matrix for plasmonic solar cells[J]. Progress in Photovoltaics: Research and Applications, 28, 682-690(2020).

    [19] Nagajyothi P C, Sreekanth T V M. Green synthesis of metallic and metal oxide nanoparticles and their antibacterial activities[M]. Basiuk V A, Basiuk E V. Green processes for nanotechnology, 99-117(2015).

    [20] Yu J, Xiao T T, Wang X M et al. Splitting of the ultraviolet plasmon resonance from controlling FePt nanoparticles morphology[J]. Applied Surface Science, 435, 1-6(2018).

    [21] Krebs H U, Weisheit M, Faupel J et al. Pulsed laser deposition (PLD): a versatile thin film technique[M]. Kramer B. Advances in solid state physics, 43, 505-518(2003).

    [22] Tian M Y, Zuo P, Liang M S et al. Femtosecond laser processing of low-dimensional nanomaterials and its application[J]. Chinese Journal of Lasers, 48, 0202004(2021).

    [23] Dai S J, Yu J, Mo Z Q et al. Particulate control technology based on pulsed laser deposition[J]. Laser & Optoelectronics Progress, 58, 0100004(2021).

    [24] Feng H, Zhang X N, Wang Z X et al. Adsorption and vibration of O atoms on Fe low-index and Fe(211) high-index surfaces[J]. Chemical Research in Chinese Universities, 23, 226-232(2007).

    [25] Cheng Y H, Kupfer H, Richter F et al. Deposition of MgO films by pulsed mid-frequency magnetron sputtering[J]. Applied Surface Science, 200, 117-124(2002).

    [26] Liu L, Yu L, Li X L et al. Structure and optical properties of Cu-doped SnS thin films prepared by PLD[J]. Chinese Journal of Luminescence, 36, 1311-1319(2015).

    [27] Yin H B, Zhao Y, Xu X B et al. Realization of tunable localized surface plasmon resonance of Cu@Cu2O core-shell nanoparticles by the pulse laser deposition method[J]. ACS Omega, 4, 14404-14410(2019).

    [28] Kholmanov I N, Gavioli L, Fanetti M et al. Effect of substrate surface defects on the morphology of Fe film deposited on graphite[J]. Surface Science, 601, 188-192(2007).

    [29] Denny Y R, Firmansyah T, Gustiono V et al. Effect of substrate temperature on the electronic properties of MgO thin films on Si (100) grown by electron beam evaporation[J]. Key Engineering Materials, 841, 243-247(2020).

    [30] Corneille J S, He J W, Goodman D W. XPS characterization of ultra-thin MgO films on a Mo(100) surface[J]. Surface Science, 306, 269-278(1994).

    [31] Toyoshima R, Kawai J, Isegawa K et al. Detailed characterization of MoOx-modified Rh metal particles by ambient-pressure XPS and DFT calculations[J]. The Journal of Physical Chemistry C, 125, 4540-4549(2021).

    [32] Moulder J F, Stickle W F, Sobol P E[M]. Handbook of X ray photoelectron spectroscopy(1993).

    [33] Bhargava G, Gouzman I, Chun C M et al. Characterization of the “native” surface thin film on pure polycrystalline iron: a high resolution XPS and TEM study[J]. Applied Surface Science, 253, 4322-4329(2007).

    [34] Liu H M, Wei G L, Xu Z et al. Quantitative analysis of Fe and Co in Co-substituted magnetite using XPS: the application of non-linear least squares fitting (NLLSF)[J]. Applied Surface Science, 389, 438-446(2016).

    [35] Graat P C J, Somers M A J. Simultaneous determination of composition and thickness of thin iron-oxide films from XPS Fe 2p spectra[J]. Applied Surface Science, 100/101, 36-40(1996).

    [36] Yang C, Fan H Q, Xi Y X et al. Effects of depositing temperatures on structure and optical properties of TiO2 film deposited by ion beam assisted electron beam evaporation[J]. Applied Surface Science, 254, 2685-2689(2008).

    [37] Feynman R P[M]. Feynman Physics Handout. Wang Z F, Transl, 289-292(1981).

    [38] Yu J. Preparation and magnetic and optical properties of FePt NPs:MgO nanocomposite films[D], 46-51(2019).

    [39] Marszalek K, Malek A, Winkowski P. The GdF3/MgF2 bilayer as an antireflective narrow-band ultraviolet filter[J]. Optica Applicata, 46, 187-197(2016).

    [40] Zhang Y A, Fan H Q, Li M M et al. Ag/BiPO4 heterostructures: synthesis, characterization and their enhanced photocatalytic properties[J]. Dalton Transactions, 42, 13172-13178(2013).

    [41] Tian H L, Fan H Q, Ma J W et al. Pt-decorated zinc oxide nanorod arrays with graphitic carbon nitride nanosheets for highly efficient dual-functional gas sensing[J]. Journal of Hazardous Materials, 341, 102-111(2018).

    [42] Sterrer M, Berger T, Diwald O et al. Energy transfer on the MgO surface, monitored by UV- induced H2 chemisorption[J]. Journal of the American Chemical Society, 125, 195-199(2003).

    [43] Agrawal A, Cho S H, Zandi O et al. Localized surface plasmon resonance in semiconductor nanocrystals[J]. Chemical Reviews, 118, 3121-3207(2018).

    [44] Mayer K M, Hafner J H. Localized surface plasmon resonance sensors[J]. Chemical Reviews, 111, 3828-3857(2011).

    [45] Fang J W, Fan H Q, Ma Y et al. Surface defects control for ZnO nanorods synthesized by quenching and their anti-recombination in photocatalysis[J]. Applied Surface Science, 332, 47-54(2015).

    [46] Li J, Fan H Q, Jia X H et al. Enhanced blue-green emission and ethanol sensing of Co-doped ZnO nanocrystals prepared by a solvothermal route[J]. Applied Physics A, 98, 537-542(2010).

    Tools

    Get Citation

    Copy Citation Text

    Jinjing Fang, Linhong Cao, Jian Yu, Jin Wang, Yajun Fu, Wanting Lan, Jingsong Zhang, Weidong Wu. Ultraviolet Narrow Band Antireflection of Fe Nanoparticles Embedded in MgO Films[J]. Laser & Optoelectronics Progress, 2023, 60(5): 0531001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Thin Films

    Received: Dec. 15, 2021

    Accepted: Jan. 17, 2022

    Published Online: Feb. 28, 2023

    The Author Email: Linhong Cao (hyclh@yeah.net), Jian Yu (yujian@sztu.com), Weidong Wu (wuweidongdin@163.com)

    DOI:10.3788/LOP213239

    Topics