Optoelectronic Technology, Volume. 41, Issue 4, 289(2021)
Study on the Properties of Ni⁃doping W18O49/ITO⁃PET Electrochromic Films
[2] Nguyen T D, Yeo L P, Mandler D et al. Electrodeposition of amorphous WO3 on SnO2⁃TiO2 inverse opal nano-framework for highly transparent, effective and stable electrochromic smart window[J]. RSC Advances, 9, 16730-16737(2019).
[3] Thilagavathi T, Venugopal D, Marnadu R et al. An investigation on microstructural, morphological, optical, photoluminescence and photocatalytic activity of WO3 for photocatalysis applications: An effect of annealing[J]. Journal of Inorganic and Organometallic Polymers and Materials, 1, 1-14(2020).
[4] Buyukkose S. Highly selective and sensitive WO3 nanoflakes based ammonia sensor[J]. Materials Science in Semiconductor Processing, 110, 104969(2020).
[5] Tian Y, Cong S, Su W et al. Synergy of W18O49 and polyaniline for smart supercapacitor electrode integrated with energy level indicating functionality[J]. Nano Letters, 14, 2150-2156(2014).
[6] Karimi E, Dabbagh G R, Ghorashi S M B et al. Electrical simulation of the function of tungsten oxide in polymeric solar cells[J]. Materials Research Express, 6, 126335(2019).
[7] Mao Y H, Yang X W, Gong W B et al. A dopant replacement‐driven molten salt method toward the synthesis of sub‐5‐nm‐sized ultrathin nanowires[J]. Small, 16, 2001098(2020).
[8] Lu C H, Hon M H, Kuan C Y et al. A complementary electrochromic device based on W18O49 nanowire arrays and Prussian blue thin films[J]. Rsc. Advances, 6, 1913-1918(2016).
[9] Chen P, Qin M, Liu Y et al. Superior optical properties of Fe3+-W18O49 nanoparticles prepared by solution combustion synthesis[J]. New Journal of Chemistry, 39, 1196-1201(2015).
[10] Su C Y, Lin H C, Lin C K. Fabrication and optical properties of Ti-doped W18O49 nanorods using a modified plasma-arc gas-condensation technique[J]. Journal of Vacuum Science &Technology, 27, 2170-2174(2009).
[11] Kunyapat T, Xu F, Neate N. Ce-doped bundled ultrafine diameter tungsten oxide nanowires with enhanced electrochromic performance[J]. Nanoscale, 10, 4718-4726(2018).
[12] Bhavani P, Kumar D P, Jeong S. Multidirectional-charge-transfer urchin-type Mo-doped W18O49 nanostructures on CdS nanorods for enhanced photocatalytic hydrogen evolution[J]. Catalysis Science &Technology, 8, 1880-1891(2018).
[13] Meng T, Kou Z, Amiinu I S et al. Electronic structure control of Tungsten Oxide activated by Ni for ultrahigh performance supercapacitors[J]. Small, 14, 1800381(2018).
[14] Lin H C, Su C Y, Yu Y H et al. Non-catalytic and substrate-free method to titania-doped W18O49 nanorods: Growth, characterizations, and electro-optical properties[J]. Journal of Nanoparticle Research, 14, 1-10(2012).
[15] Cheng F, Li X W. Effects of In Situ Co or Ni doping on the photoelectrochemical performance of hematite nanorod arrays[J]. Applied Sciences, 10, 3567(2020).
[16] Zhong X, Sun Y, Chen X et al. Mo doping induced more active sites in urchin-like W18O49 nanostructure with remarkably enhanced performance for hydrogen evolution reaction[J]. Advanced Functional Materials, 26, 5778-5786(2016).
[18] Wang H, Xu S, Tsai C et al. Direct and continuous strain control of catalysts with tunable battery electrode materials[J]. Science, 354, 1031-1036(2016).
[19] Xiao X, Zhou X, Ma J et al. Rational synthesis and gas sensing performance of ordered mesoporous semiconducting WO3/NiO composites[J]. ACS Applied Materials & Interfaces, 11, 26268-26276(2019).
[20] Xie J L, Song B, Zhao G L et al. Citric acid induced W18O49 electrochromic films with enhanced optical modulation[J]. Applied Physics Letters, 112, 231902-5(2018).
[21] Liu Q, Wang F J, Lin H X et al. Surface oxygen vacancy and defect engineering of WO3 for improved visible light photocatalytic performance[J]. Catalysis Science & Technology, 8, 4399-4406(2018).
[22] Soltani T, Tayyebi A, Hong H et al. A novel growth control of nanoplates WO3 photoanodes with dual oxygen and tungsten vacancies for efficient photoelectrochemical water splitting performance[J]. Solar Energy Materials & Solar Cells, 191, 39-49(2019).
[23] Ma M, Zhang K, Li P et al. Dual oxygen and tungsten vacancies on a WO3 photoanode for enhanced water oxidation[J]. Angewandte Chemie International Edition, 55, 11819-11823(2016).
[24] Zhang M, Cheng G, Wei Y et al. Cuprous ion (Cu+) doping induced surface/interface engineering for enhancing the CO2 photoreduction capability of W18O49 nanowires[J]. Journal of Colloid and Interface Science, 572, 306-317(2020).
[25] Hai G J, Huang J F, Jie Y N et al. Unveiling the relationships between (010) facets-orientation growth and photocatalytic activity in W18O49 nanowires[J]. Journal of Alloys and Compounds, 820, 153127(2020).
[26] Xu S, Li X, Ou Y et al. Ultra-large optical modulation of a size-tunable flexible electrochromic honeycomb mesoporous tungsten oxide film[J]. Inorganic Chemistry Frontiers, 6, 680-686(2019).
[27] Gu H, Guo C, Zhang S et al. Highly efficient, near-infrared and visible light modulated electrochromic devices based on polyoxometalates and W18O49 nanowires[J]. Acs Nano, 12, 559-567(2018).
[28] Vu M H, Nguyen C C, Do T O. Synergistic effect of Fe doping and plasmonic Au nanoparticles on W18O49 nanorods for enhancing photoelectrochemical nitrogen reduction[J]. ACS Sustainable Chemistry & Engineering, 8, 12321-12330(2020).
[29] Zhou L, Wei P, Fang H et al. Self-doped tungsten oxide films induced by in-situ carbothermal reduction for high performance electrochromic devices[J]. Journal of Materials Chemistry C, 8, 13999-14006(2020).
Get Citation
Copy Citation Text
Duoyin ZHU, Zhihao JIN, Junrong YUE, Jianling ZHANG, Yanbin CUI. Study on the Properties of Ni⁃doping W18O49/ITO⁃PET Electrochromic Films[J]. Optoelectronic Technology, 2021, 41(4): 289
Category: Research and Trial-manufacture
Received: Mar. 31, 2021
Accepted: --
Published Online: Aug. 3, 2022
The Author Email: CUI Yanbin (ybcui@ipe.ac.cn)