Laser & Optoelectronics Progress, Volume. 61, Issue 9, 0904001(2024)

Broadband and High-Flatness Balanced Homodyne Detector for Continuous-Variable Quantum Random Number Generation

Juan Deng1,2, Yangqiang Guo1,2, Hong Lin1, Jiehong Lin1, and Xiaomin Guo1、*
Author Affiliations
  • 1Key Laboratory of Advanced Transducers and Intelligent Control System, Ministry of Education, College of Physics, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
  • 2State Key Laboratory of Cryptology, Beijing 100878, China
  • show less
    References(38)

    [1] Lvovsky A I, Raymer M G. Continuous-variable optical quantum-state tomography[J]. Reviews of Modern Physics, 81, 299-332(2009).

    [2] Leonhardt U, Paul H. Measuring the quantum state of light[J]. Progress in Quantum Electronics, 19, 89-130(1995).

    [3] Fercher A F, Drexler W, Hitzenberger C K et al. Optical coherence tomography-principles and applications[J]. Reports on Progress in Physics, 66, 239-303(2003).

    [4] Wang R, Chen L, Zhao Y M et al. A high signal-to-noise ratio balanced detector system for 2 μm coherent wind lidar[J]. Review of Scientific Instruments, 91, 073101(2020).

    [5] Lawrie B J, Lett P D, Marino A M et al. Quantum sensing with squeezed light[J]. ACS Photonics, 6, 1307-1318(2019).

    [6] Pirandola S, Bardhan B R, Gehring T et al. Advances in photonic quantum sensing[J]. Nature Photonics, 12, 724-733(2018).

    [7] Grosshans F, Van Assche G, Wenger J et al. Quantum key distribution using Gaussian-modulated coherent states[J]. Nature, 421, 238-241(2003).

    [8] Qin H, Kumar R, Makarov V et al. Homodyne-detector-blinding attack in continuous-variable quantum key distribution[J]. Physical Review A, 98, 012312(2018).

    [9] Larsen M V, Guo, X S, Breum C R et al. Deterministic generation of a two dimensional cluster state[J]. Science, 366, 369-372(2019).

    [10] Bourassa J E, Alexander R N, Vasmer M et al. Blueprint for a scalable photonic fault-tolerant quantum computer[J]. Quantum, 5, 392-424(2021).

    [11] Drahi D, Walk N, Hoban M J et al. Certified quantum random numbers from untrusted light[J]. Physical Review X, 10, 041048(2020).

    [12] Xu B J, Chen Z Y, Li Z Y et al. High speed continuous variable source-independent quantum random number generation[J]. Quantum Science and Technology, 4, 025013(2019).

    [13] Gehring T, Lupo C, Kordts A et al. Homodyne-based quantum random number generator at 2.9 Gbps secure against quantum side-information[J]. Nature Communications, 12, 605-615(2021).

    [14] Du S N, Li Z Y, Liu W Y et al. High-speed time-domain balanced homodyne detector for nanosecond optical field applications[J]. Journal of the Optical Society of America B, 35, 481-486(2018).

    [15] Pan G X, Liu H, Zhai Z H et al. Analysis of the noise spectra in balanced homodyne detector[J]. Journal of Quantum Optics, 27, 109-116(2021).

    [16] Liu J Q, Cao Y X, Wang P et al. Impact of homodyne receiver bandwidth and signal modulation patterns on the continuous-variable quantum key distribution[J]. Optics Express, 30, 27912-27925(2022).

    [17] Yuen H P, Chan V W S. Noise in homodyne and heterodyne detection[J]. Optics Letters, 8, 177-179(1983).

    [18] Hansen H, Aichele T, Hettich C et al. Ultrasensitive pulsed, balanced homodyne detector: application to time-domain quantum measurements[J]. Optics Letters, 26, 1714-1716(2001).

    [19] Chi Y M, Qi B, Zhu W et al. A balanced homodyne detector for high-rate Gaussian-modulated coherent-state quantum key distribution[J]. New Journal of Physics, 13, 013003(2011).

    [20] Huang D A, Fang J A, Wang C et al. A 300-MHz bandwidth balanced homodyne detector for continuous variable quantum key distribution[J]. Chinese Physics Letters, 30, 114209(2013).

    [21] Liu J Q, Wang X Y, Bai Z L et al. Highprecision auto-balance of the time-domain pulsed homodyne detector[J]. Acta Physica Sinica, 65, 100303(2016).

    [22] Zhang X X, Zhang Y C, Li Z Y et al. 1.2-GHz balanced homodyne detector for continuous-variable quantum information technology[J]. IEEE Photonics Journal, 10, 6803810(2018).

    [23] Wang S F, Liu X Z, Li H Q et al. Design of 1 kHz-200 MHz broadband balanced homodyne detector based on R-C coupled circuit[J]. Acta Optica Sinica, 43, 0923001(2023).

    [24] Weedbrook C, Pirandola S, García-Patrón R et al. Gaussian quantum information[J]. Reviews of Modern Physics, 84, 621-669(2012).

    [25] Gabriel C, Wittmann C, Sych D et al. A generator for unique quantum random numbers based on vacuum states[J]. Nature Photonics, 4, 711-715(2010).

    [26] Guo X M, Liu R P, Li P et al. Enhancing extractable quantum entropy in vacuum-based quantum random number generator[J]. Entropy, 20, 819-831(2018).

    [27] Zhu Y Y, He G Q, Zeng G H. Unbiased quantum random number generation based on squeezed vacuum state[J]. International Journal of Quantum Information, 10, 1250012(2012).

    [28] Haw J Y, Assad S M, Lance A M et al. Maximization of extractable randomness in a quantum random-number generator[J]. Physical Review Applied, 3, 054004(2015).

    [29] Zhang J, Zhang Y, Zheng Z et al. Finite-size analysis of continuousvariable source-independent quantum random number generation[J]. Quantum Information Processing, 20, 02936(2021).

    [30] Wu M C, Cheng C, Zhang J J et al. Real-time and parallel post-processing for high-speed quantum random number generation[J]. Study on Optical Communications, 1-6(2020).

    [31] Guo X M, Cheng C, Wu M C et al. Parallel real-time quantum random number generator[J]. Optics Letters, 44, 5566-5569(2019).

    [32] Guo X M, Wu M C, Zhang J J et al. Parallel and real-time post-processing for quantum random number generators[J]. Quantum Physics, 2107, 14177-14186(2021).

    [33] Wang S F, Xiang X A, Zhou C H et al. Simulation of high SNR photodetector with L-C coupling and transimpedance amplifier circuit and its verification[J]. Review of Scientific Instruments, 88, 013107(2017).

    [34] Lang S B, Zhang S C, Li X L et al. Low noise balanced homodyne detector for quantum noise measurement[J]. IEEE Access, 10, 27912-27916(2022).

    [35] Serikawa T, Furusawa A. 500 MHz resonant photodetector for high-quantum-efficiency, low-noise homodyne measurement[J]. Review of Scientific Instruments, 89, 063120(2018).

    [36] Ludwig R, Bretchko P, Wang Z Y, Zhang Z Y, Xu C et al[M]. RF circuit design, 316-317(2002).

    [37] Song Z H, Wei F L. Monolithic amplifer of ERA[J]. Semiconductor Information, 36, 61-64(1999).

    [38] Jiang C L. Research on key technology of tunable photoelectric oscillation[D], 37-38(2014).

    Tools

    Get Citation

    Copy Citation Text

    Juan Deng, Yangqiang Guo, Hong Lin, Jiehong Lin, Xiaomin Guo. Broadband and High-Flatness Balanced Homodyne Detector for Continuous-Variable Quantum Random Number Generation[J]. Laser & Optoelectronics Progress, 2024, 61(9): 0904001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Detectors

    Received: May. 6, 2023

    Accepted: Jun. 20, 2023

    Published Online: May. 10, 2024

    The Author Email: Xiaomin Guo (guoxiaomin@tyut.edu.cn)

    DOI:10.3788/LOP231233

    CSTR:32186.14.LOP231233

    Topics