Acta Optica Sinica, Volume. 39, Issue 2, 0215001(2019)
Tracking Algorithm Based on Correlation Filter Fusing with Keypoint Matching
Fig. 3. Tracking results for nine kinds of trackers on different databases. (a) Tracking success rate and (b) tracking precisionfor OTB-13 database; (c) tracking success rate and (d) tracking precision for OTB-15 database
Fig. 4. Comparison of tracking success rate for each algorithm under eleven kinds of scenes. (a) In-plane rotation; (b) low resolution; (c) object occlusion; (d) out of view; (e) out-of-plane rotation; (f) scale variation; (g) fast motion; (h) background clutter; (i) motion blur; (j) object deformation; (k) illumination variation
Fig. 5. Tracking result graphs in partial sequences for six kinds of tracking algorithms. (a) BlurOwl; (b) Liquor; (c) Box; (d) Jogging 1; (e) Jogging 2; (f) Tigger
|
|
Get Citation
Copy Citation Text
Zhe Zhang, Jin Sun, Liutao Yang. Tracking Algorithm Based on Correlation Filter Fusing with Keypoint Matching[J]. Acta Optica Sinica, 2019, 39(2): 0215001
Category: Machine Vision
Received: Jul. 24, 2018
Accepted: Sep. 17, 2018
Published Online: May. 10, 2019
The Author Email: