Laser & Optoelectronics Progress, Volume. 61, Issue 24, 2437008(2024)

Incremental Learning Method for Fine-Grained Bird Recognition Based on Prompt Learning

Tong Zhu*, Haimiao Zhang, and Jun Qiu
Author Affiliations
  • Institute of Applied Mathematics, Beijing Information Science and Technology University, Beijing 100101, China
  • show less
    Figures & Tables(17)
    Fine-grained recognition tasks for birds
    Basic flow of image classification based on class incremental learning
    Framework diagram of proposed method
    Query function module
    Text-prompt generation module
    Prompt pool module
    Schematic of CUB-200-2011 dataset reconstruction
    • Table 1. Details of datasets

      View table

      Table 1. Details of datasets

      DatasetNumber of dataCategoryTraining SetTesting Set
      CUB-200-20111178820059945794
      CIFAR-100600001005000010000
      5-datasets2611505021278548365
    • Table 2. Hyperparameters settings for different datasets

      View table

      Table 2. Hyperparameters settings for different datasets

      ParameterCIFAR-1005-datasetsCUB-200-2011
      OptimizerAdamAdamSGD
      Learning rate0.030.030.03
      Momentum0.90.90.9
      Batch size16164
      Epoch5510
      Random seed42421993
      λ0.10.50.1
      Prompt length1055
      Top-k545
    • Table 3. Comparison of classification accuracy of different algorithms on CUB-200-2011 dataset

      View table

      Table 3. Comparison of classification accuracy of different algorithms on CUB-200-2011 dataset

      MethodTop-1 accuracy in each task /%
      12345678910A¯
      Finetune10.9313.449.6712.412.719.259.638.368.086.7910.12
      LwF85.4360.3551.9347.9946.5542.9440.3439.438.9633.4648.73
      iCaRL92.7156.4341.9333.4131.1424.8621.4517.0315.0412.8134.50
      EWC85.4353.0857.8952.3455.8151.7751.4342.4639.841.6953.16
      L2P94.3382.1672.9267.5763.1361.8663.8659.0257.4755.8167.81
      Proposed91.6885.1077.8073.6270.6268.6064.4161.9457.5155.0270.63
    • Table 4. Comparison of classification accuracy of different algorithms on CIFAR-100 dataset

      View table

      Table 4. Comparison of classification accuracy of different algorithms on CIFAR-100 dataset

      MethodALF
      Finetune5.8422.62
      LwF60.6927.77
      iCaRL61.2027.61
      EWC47.0133.27
      L2P83.837.63
      Proposed84.486.43
    • Table 5. Comparison of classification accuracy of different algorithms on 5-datasets

      View table

      Table 5. Comparison of classification accuracy of different algorithms on 5-datasets

      MethodALF
      LwF50.9334.94
      EWC47.9138.01
      L2P81.144.64
      Proposed82.025.34
    • Table 6. Influence of different text prompts

      View table

      Table 6. Influence of different text prompts

      MethodA¯ALF
      Without family and order68.2753.6530.24
      With family68.9552.6041.40
      With order69.9054.0830.90
      Proposed(with family and order)70.6355.0232.50
    • Table 7. Comparison of classification accuracy of different algorithms on CIFAR-100 dataset

      View table

      Table 7. Comparison of classification accuracy of different algorithms on CIFAR-100 dataset

      BackboneALFParameters /106FLOPs /109
      ViT-T/1659.3514.475.491.34
      ViT-S/1678.577.2121.605.30
      ViT-B/1684.486.4385.6821.09
      ViT-L/1686.135.33303.1074.74
    • Table 8. Influence of prompt pool module

      View table

      Table 8. Influence of prompt pool module

      MethodALF
      ViT70.2910.06
      ViT+prompt pool83.306.62
      ViT+optimized prompt pool84.486.43
    • Table 9. Influence of prompt length

      View table

      Table 9. Influence of prompt length

      Prompt lengthCIFAR-100CUB-200-2011
      Learnable parameterALFLearnable parameterA¯ALF
      19245681.235.3416935669.9356.5930.63
      512317683.456.5420007670.6355.0220.98
      1016157684.486.4323847671.3657.3330.55
    • Table 10. Influence of query features

      View table

      Table 10. Influence of query features

      Query featureALF
      hcls83.707.37
      hl84.486.43
    Tools

    Get Citation

    Copy Citation Text

    Tong Zhu, Haimiao Zhang, Jun Qiu. Incremental Learning Method for Fine-Grained Bird Recognition Based on Prompt Learning[J]. Laser & Optoelectronics Progress, 2024, 61(24): 2437008

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Digital Image Processing

    Received: Apr. 3, 2024

    Accepted: May. 21, 2024

    Published Online: Dec. 17, 2024

    The Author Email:

    DOI:10.3788/LOP241031

    CSTR:32186.14.LOP241031

    Topics