International Journal of Extreme Manufacturing, Volume. 7, Issue 4, 45002(2025)
Cryogenic 3D printing of damage tolerant hierarchical porous ceramics
[1] [1] Huang W et al. 2020. A natural impact-resistant bicontinuous composite nanoparticle coating.Nat. Mater.19, 1236–1243.
[2] [2] Jia Z A, Deng Z F and Li L. 2022. Biomineralized materials as model systems for structural composites: 3D architecture.Adv. Mater.34, 2106259.
[3] [3] Nepal D et al. 2023. Hierarchically structured bioinspired nanocomposites.Nat. Mater.22, 18–35.
[4] [4] He J J, Zhang Q Y, Zhou Y Y, Chen Y, Ge H X and Tang S C. 2024. Bioinspired polymer films with surface ordered pyramid arrays and 3D hierarchical pores for enhanced passive radiative cooling.ACS Nano18, 11120–11129.
[5] [5] Siddique S H, Hazell P J, Wang H X, Escobedo J P and Ameri A A H. 2022. Lessons from nature: 3D printed bioinspired porous structures for impact energy absorption—a review.Addit. Manuf.58, 103051.
[6] [6] Eder M, Amini S and Fratzl P. 2018. Biological composites-complex structures for functional diversity.Science362, 543–547.
[7] [7] Koons G L, Diba M and Mikos A G. 2020. Materials design for bone-tissue engineering.Nat. Rev. Mater.5, 584–603.
[8] [8] Yang X Y, Chen L H, Li Y, Rooke J C, Sanchez C and Su B L. 2017. Hierarchically porous materials: synthesis strategies and structure design.Chem. Soc. Rev.46, 481–558.
[9] [9] Zhu C, Gemeda H B, Duoss E B and Spadaccini C M. 2024. Toward multiscale, multimaterial 3D printing.Adv. Mater.36, 2314204.
[10] [10] Essmeister J, Fuchsberger A M, Steiner D, Schwarz S, Schachinger T, Lale A, Schwentenwein M, Fttinger K and Konegger T. 2024. Hierarchically porous ceramic and metal-ceramic hybrid materials structured by vat photopolymerization-induced phase separation.Adv. Mater. Technol.9, 2301400.
[11] [11] Zhang Z B, Gao H L, Wen S M, Pang J, Zhang S C, Cui C, Wang Z Y and Yu S H. 2023. Scalable manufacturing of mechanical robust bioinspired ceramic–resin composites with locally tunable heterogeneous structures.Adv. Mater.35, 2209510.
[12] [12] Li B, Yan Y D, Jin X X, Geng Y Q, Wang S, Cao M C, He X L, Li N and Zhuang Y L. 2021. Microstructure and mechanical and thermal shock properties of hierarchically porous ceramics.Ceram. Int.47, 24887–24894.
[13] [13] Xu B K, He Q C, Wang Y Q and Yin X M. 2023. Ultralight and efficient microwave absorption of SiC/SiO2 ceramic aerogels derived from biomass.Ceram. Int.49, 30125–30136.
[14] [14] Yang J J, Ju H S, Zhang X Y and Yang J L. 2023. Pore structure regulation of hierarchically porous TiO2 ceramics derived from printable foams.Ceram. Int.49, 23721–23731.
[15] [15] Wang Z and Florczyk S J. 2020. Freeze-FRESH: a 3D printing technique to produce biomaterial scaffolds with hierarchical porosity.Materials13, 354.
[16] [16] Kleger N, Minas C, Bosshard P, Mattich I, Masania K and Studart A R. 2021. Hierarchical porous materials made by stereolithographic printing of photo-curable emulsions.Sci. Rep.11, 22316.
[17] [17] Huo W L, Tervoort E, Gantenbein S, Jeoffroy E, Yang J L and Studart A R. 2023. 3D printing of hollow microspheres into strong hierarchical porous ceramics.Adv. Mater. Technol.8, 2300065.
[18] [18] Zhang B, Yang Y and Fan X L. 2024. Processing, microstructure, and properties of porous ceramic composites with directional channels.J. Mater. Sci. Technol.168, 1–15.
[19] [19] Man Y R, Ding G Q, Xudong L, Xue K H, Qu D L and Xie Z P. 2021. A review on porous ceramics with hierarchical pore structure by 3D printing-based combined route.J. Asian Ceram. Soc.9, 1377–1389.
[20] [20] Peng E, Zhang D W and Ding J. 2018. Ceramic robocasting: recent achievements, potential, and future developments.Adv. Mater.30, 1802404.
[21] [21] Lakhdar Y, Tuck C, Binner J, Terry A and Goodridge R. 2021. Additive manufacturing of advanced ceramic materials.Prog. Mater. Sci.116, 100736.
[22] [22] Yin H F, Zhang W Z, Zhu L C, Meng F B, Liu J and Wen G L. 2023. Review on lattice structures for energy absorption properties.Compos. Struct.304, 116397.
[23] [23] Yang F Y, Zhao S, Chen G B, Gui Y, Zhang Z, Guan R L, Xia X X, Xie H and Yang Z C. 2024. Direct-writing assembly of high-strength hierarchical porous mullite-based lattices with a multiscale reinforcing strategy.Appl. Mater. Today36, 102017.
[24] [24] Yang F Y, Zhao S, Chen G B, Li K F, Fei Z F, Mummery P and Yang Z C. 2024. High-strength, multifunctional and 3D printable mullite-based porous ceramics with a controllable shell-pore structure.Adv. Powder Mater.3, 100153.
[25] [25] Liu Q Y and Zhai W. 2022. Hierarchical porous ceramics with distinctive microstructures by emulsion-based direct ink writing.ACS Appl. Mater. Interfaces14, 32196–32205.
[26] [26] Minas C, Carnelli D, Tervoort E and Studart A R. 2016. 3D printing of emulsions and foams into hierarchical porous ceramics.Adv. Mater.28, 9993–9999.
[27] [27] Cidonio G, Costantini M, Pierini F, Scognamiglio C, Agarwal T and Barbetta A. 2021. 3D printing of biphasic inks: beyond single-scale architectural control.J. Mater. Chem.C9, 12489–12508.
[28] [28] Shao G F, Hanaor D A H, Shen X D and Gurlo A. 2020. Freeze casting: from low-dimensional building blocks to aligned porous structures-a review of novel materials, methods, and applications.Adv. Mater.32, 1907176.
[29] [29] Liu C Y, Tong J D, Ma J, Wang D M, Xu F, Liu Y L, Chen Z W and Lao C S. 2019. Low-temperature deposition manufacturing: a versatile material extrusion-based 3D printing technology for fabricating hierarchically porous materials.J. Nanomater.2019, 1291067.
[30] [30] Ye J, Zhou X Y, Huang Z, Zhang X L, Huang W, Wu B and Zhou H M. 2024. Low-temperature-field-assisted fabrication of cross-scale tissue engineering scaffolds.Int. J. Extrem. Manuf.7, 022011.
[31] [31] Song X L, Tetik H, Jirakittsonthon T, Parandoush P, Yang G, Lee D, Ryu S, Lei S T, Weiss M L and Lin D. 2019. Biomimetic 3D printing of hierarchical and interconnected porous hydroxyapatite structures with high mechanical strength for bone cell culture.Adv. Eng. Mater.21, 1800678.
[32] [32] Gao X S, Wang H H, Luan S F and Zhou G Y. 2022. Low-temperature printed hierarchically porous induced-biomineralization polyaryletherketone scaffold for bone tissue engineering.Adv. Healthcare Mater.11, 2200977.
[33] [33] Ji J Y, Wang C J, Xiong Z, Pang Y and Sun W. 2022. 3D-printed scaffold with halloysite nanotubes laden as a sequential drug delivery system regulates vascularized bone tissue healing.Mater. Today Adv.15, 100259.
[34] [34] Ye X L et al. 2022. Cryogenic 3D printing of w/o pickering emulsions containing bifunctional drugs for producing hierarchically porous bone tissue engineering scaffolds with antibacterial capability.Int. J. Mol. Sci.23, 9277.
[35] [35] Renteria A, Diaz J A, He B T, Renteria-Marquez I A, Chavez L A, Regis J E, Liu Y T, Espalin D, Tseng T L and Lin Y R. 2019. Particle size influence on material properties of BaTiO3 ceramics fabricated using freeze-form extrusion 3D printing.Mater. Res. Express6, 115211.
[36] [36] Liu C Y, Cheng X X, Li B H, Chen Z W, Mi S L and Lao C S. 2017. Fabrication and characterization of 3D-printed highlyporous 3D LiFePO4 electrodes by low temperature direct writing process.Materials10, 934.
[37] [37] Xu C, Xia Y H, Zhuang P Z, Liu W L, Mu C P, Liu Z Y, Wang J L, Chen L L, Dai H L and Luo Z Q. 2023. FePSe3-nanosheets-integrated cryogenic-3D-printed multifunctional calcium phosphate scaffolds for synergistic therapy of osteosarcoma.Small19, 2303636.
[38] [38] Xie Y, Zou J F, Li G, Liu H T, Wang Y, Lei Y F, Liu K, Xue L J and Liu S. 2022. Wires with continuous sabal leaf-patterned micropores constructed by freeze printing for a wearable sensor responsible to multiple deformations.Small18, 2201091.
[39] [39] Lee H, Yang G H, Kim M, Lee J, Huh J and Kim G. 2018. Fabrication of micro/nanoporous collagen/dECM/silkfibroin biocomposite scaffolds using a low temperature 3D printing process for bone tissue regeneration.Mater. Sci. Eng.C84, 140–147.
[40] [40] Wang N, Liu Y S, Zhang Y, Du Y and Zhang J Z. 2019. Control of pore structure during freeze casting of porous SiC ceramics by different freezing modes.Ceram. Int.45, 11558–11563.
[41] [41] Seuba J, Deville S, Guizard C and Stevenson A J. 2016. Mechanical properties and failure behavior of unidirectional porous ceramics.Sci. Rep.6, 24326.
[42] [42] Mi A, Guo L Q, Guo S, Wang L Q, Shang H S, Wang D, Zhao Y F and Zhang B. 2024. Freeze-casting in synthetic porous materials: principles, different dimensional building units and recent applications.Sustain. Mater. Technol.39, e00830.
[43] [43] Yang T, Jia Z A, Chen H S, Deng Z F, Liu W K, Chen L N and Li L. 2020. Mechanical design of the highly porous cuttlebone: a bioceramic hard buoyancy tank for cuttlefish.Proc. Natl Acad. Sci. USA117, 23450–23459.
[44] [44] Deng J R, Tang X C, Mo Y H, Meng L Y and Yao X H. 2023. The Drucker–Prager criterion-based plasticity theory of amorphous alloys under the complex stress states.J. Non-Cryst. Solids616, 122453.
Get Citation
Copy Citation Text
Zhu Zheng, Gao Dandan, Huang Zhuo, Chang Wei, Wu Bin, Zhang Kaihao, Sun Minghan, Song Hengxu, Ritchie Robert O, Wang Tao, Huang Wei, Zhou Huamin. Cryogenic 3D printing of damage tolerant hierarchical porous ceramics[J]. International Journal of Extreme Manufacturing, 2025, 7(4): 45002
Category:
Received: Oct. 21, 2024
Accepted: Sep. 9, 2025
Published Online: Sep. 9, 2025
The Author Email: