Laser & Optoelectronics Progress, Volume. 62, Issue 16, 1634001(2025)

Latent Space Diffusion Model Digital Radiography Image Super-Resolution Enhancement Algorithm

Zhihui Liang, Xinyi Wu*, and Wei Wu
Author Affiliations
  • Key Laboratory of Nondestructive Testing, Ministry of Education, Nanchang Hangkong University, Nanchang 330063, Jiangxi , China
  • show less
    Figures & Tables(14)
    Overall structure of the algorithm. (a) Autoencoder; (b) latent space diffusion
    Forward diffusion process and reverse diffusion process
    Diffusion model denoising network structure
    Cross attention structure guided by frequency domain information
    Partial original images in the dataset
    Dataset display after pruning
    Comparison of the super-resolution enhancement results of DR images. (a) Workpiece 1; (b) workpiece 2
    Comparison of the super-resolution enhancement results of CT reconstruction images. (a) Local comparison; (b) global comparison
    Spatial resolution comparison experiments. (a) Original image; (b) grayscale distribution of the original image; (c) quantitative identification of spatial resolution; (d) grayscale distribution of super-resolution reconstruction image
    Comparison of reasoning performance
    • Table 1. Pseudo code for training and inference algorithms

      View table

      Table 1. Pseudo code for training and inference algorithms

      Algorithm 2 diffusion model sampling

      InputxT~N0,1,condition y

      sampling steps N,previous time step k,next time step s

      Outputreconstructed feature x0

        1:for k in linespace(T,1,N

        2: ϵ'=ϵθxk,y,t

        3: xs=α¯sxk-ϵ'1-α¯kα¯k+1-α¯s-σ2ϵ'

        4:end

        5:x0=xs

    • Table 2. Performance of each method

      View table

      Table 2. Performance of each method

      MethodPSNR/dBSSIM
      Bilinear35.3000.930
      Bicubic36.7330.942
      VDSR38.3450.943
      SRCNN39.4510.939
      SRGAN39.5790.963
      EDSR40.5620.954
      FSRCNN40.6540.932
      ESRGAN41.8860.956
      RDN42.7540.966
      Real-ESRGAN43.5590.962
      SwinIR44.8890.969
      DLGSANet46.0730.974
      SRFormer46.1530.970
      Proposed47.1060.983
    • Table 3. Performance at different sampling time steps

      View table

      Table 3. Performance at different sampling time steps

      Sampling stepInference time /sPSNR /dBSSIM
      10.09423.52250.2394
      50.26646.96290.9837
      100.52447.10520.9835
      201.02847.10610.9831
      502.47046.90000.9824
      1005.00146.61520.9814
      2009.96046.41950.9802
      50024.90545.84160.9760
      100050.00545.07660.9714
      200099.24945.33130.9717
    • Table 4. Inter module ablation experiment

      View table

      Table 4. Inter module ablation experiment

      ModuleEvaluation metric
      PSNR /dBSSIMInference time /s
      Cross attention46.8650.97426.67
      Autoencoder45.2140.9530.51

      Autoencoder+cross

      attention

      47.1060.9830.53
    Tools

    Get Citation

    Copy Citation Text

    Zhihui Liang, Xinyi Wu, Wei Wu. Latent Space Diffusion Model Digital Radiography Image Super-Resolution Enhancement Algorithm[J]. Laser & Optoelectronics Progress, 2025, 62(16): 1634001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: X-Ray Optics

    Received: Jan. 13, 2025

    Accepted: Mar. 17, 2025

    Published Online: Aug. 4, 2025

    The Author Email: Xinyi Wu (int1654736198@163.com)

    DOI:10.3788/LOP250503

    CSTR:32186.14.LOP250503

    Topics