Journal of the Chinese Ceramic Society, Volume. 50, Issue 10, 2676(2022)

Effect of Fe/SiO2 Ratio on Slag Structure and Separation Characteristic of Slag and Low Nickel Matte

WANG Guohua1、*, CUI Yaru1, SHI Ruimeng1, LV Chaofei2,3, LI Xiaoming1, ZHAO Junxue1, and Yang Shufeng4
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • 4[in Chinese]
  • show less
    References(41)

    [1] [1] MA Y B, DU X Y. Influence of CaO addition, FeO/SiO2, and MgO/SiO2 on the melting characteristic temperatures of FeO-SiO2 -MgO-CaO system[J]. Mater Res-Ibero-am J, 2019, 22(3): e20180645.

    [2] [2] MA Y B, DU X Y. Effects of CaO addition on the iron recycling from nickel slags by oxidation-magnetic separation[J]. Metals, 2018, 8(11): 956.

    [3] [3] PANG Z D, LV X W, JIANG Y Y, et al. Blast furnace ironmaking process with super-high TiO2 in the slag: Viscosity and melting properties of the slag[J]. Metall Mater Trans B, 2020, 51(2): 722-731.

    [4] [4] ZHANG G Z, WANG N, CHEN M, et al. Viscosity and structure of CaO-SiO2-"FeO"-Al2O3-MgO system during iron-extracting process from nickel slag by aluminum dross. Part 1: Coupling effect of "FeO" and Al2O3[J]. Steel Res Int, 2018, 89(10): 1800272.

    [5] [5] SINEVA S, SHEVCHENKO M, SHISHIN D, et al. Phase equilibria and minor element distributions in complex copper/slag/matte systems[J]. Jom, 2020, 72(10): 3401-3409.

    [6] [6] PISKUNEN P, AVARMAA K, O'BRIEN H, et al. Precious metal distributions in direct nickel matte smelting with Low-Cu mattes[J]. Metall Mater Trans B, 2018, 49(1): 98-112.

    [7] [7] WAN X B, SHEN L T, JOKILAAKSO A, et al. Experimental approach to matte-slag reactions in the flash smelting process[J]. Miner Process Extr Metall Rev, 2021, 42(4): 231-241.

    [8] [8] CHEN M, AVARMAA K, KLEMETTINEN L, et al. Experimental study on the phase equilibrium of copper matte and silica-saturated FeOx-SiO2-based slags in pyrometallurgical WEEE processing[J]. Metall Mater Trans B, 2020, 51(4): 1552-1563.

    [9] [9] SHISHIN D, JAK E, DECTEROV S A. Thermodynamic assessment of slag-matte-metal equilibria in the Cu-Fe-O-S-Si system[J]. J Phase Equilib Diffus, 2018, 39(5): 456-475.

    [10] [10] SHISHIN D, HIDAYAT T, CHEN J, et al. Experimental investigation and thermodynamic modeling of the distributions of ag and au between slag, matte, and metal in the Cu-Fe-O-S-Si system[J]. J Sustain Metall, 2019, 5(2): 240-249.

    [11] [11] GAO X, CHEN Z, SHI J J, et al. Effect of cooling rate and slag modification on the copper matte in smelting slag[J]. Mining Metall Explor, 2020, 37(5): 1593-1601.

    [12] [12] SHIN S H, KIM S J. Development of kinetic model for reactions between Cu-containing multicomponent slag and liquid sulfide using coupled reaction model[J]. Metall Mater Trans B, 2018, 49(6): 3074-3085.

    [13] [13] WANG G H, CUI Y R, YANG J A, et al. Fe/SiO2 ratio on the properties, microstructure and Fe-containing phases of nickel matte smelting slag[J]. Metall Mater Trans B, 2021, 52(3): 1463-1471.

    [14] [14] WANG G H, CUI Y R, LI X M, et al. Molecular Dynamics Simulation on Microstructure and Physicochemical Properties of FexO-SiO2-CaO-MgO-“NiO” Slag in Nickel Matte Smelting under Modulating CaO Content[J]. Minerals, 2020, 10(2): 149.

    [15] [15] ZHAO J X, ZHAO Z Y, CUI Y R, et al. New Slag for Nickel Matte Smelting Process and Subsequent Fe Extraction[J]. Metall Mater Trans B, 2018, 49(1): 304-310.

    [16] [16] SHEN Y Y, CHONG J K, HUANG Z N, et al. Viscosity and structure of a CaO-SiO2-FeO-MgO system during a modified process from nickel slag by CaO[J]. Materials, 2019, 12(16): 2562.

    [17] [17] CHEN C L, WRIGHT S. Distribution of Bi between slags and liquid copper[J]. Metall Mater Trans B, 2016, 47(3): 1681-1689.

    [18] [18] CHEN M, AVARMAA K, KLEMETTINEN L, et al. Precious metal distributions between copper matte and slag at high P-SO2 in WEEE reprocessing[J]. Metall Mater Trans B, 2021, 52B(4): 871-882.

    [19] [19] LAN X, GAO J T, HUANG Z, et al. Rapid separation of copper phase and iron-rich phase from copper slag at low temperature in a super-gravity field[J]. Metall Mater Trans B, 2018, 49(3): 1165-1173.

    [20] [20] LI T L, ZHAO C G, SUN C Y, et al. Roles of MgO and Al2O3 in viscous and structural behavior of blast furnace primary slag with C/S = 1.4[J]. Metall Mater Trans B, 2020, 51(6): 2724-2734.

    [21] [21] ZHANG R, WANG Y, ZHAO X, et al. Structure and viscosity of molten CaO-SiO2-FexO Slag during the early period of basic oxygen steelmaking[J]. Metall Mater Trans B, 2020, 51(5): 2021-2029.

    [22] [22] YANG T Z, XIE B Y, LIU W F, et al. Enrichment of gold in antimony matte by direct smelting of refractory gold concentrate[J]. Jom, 2018, 70(6): 1017-1023.

    [24] [24] KIM T S, PARK J H. Thermodynamics of iron redox equilibria and viscosity-structure relationship of CaO-Al2O3-FetO melts[J]. J Non-Cryst Solids, 2020, 542(8): 120089.

    [25] [25] ZHAO M Z, CAO J W, GENG X H, et al. Structural origin of CaO-MgO-Al2O3-SiO2-Fe2O3 glass crystallization: Iron-containing clusters[J]. J Non-Cryst Solids, 2020, 547(21): 120295.

    [26] [26] ZHANG Z, XIE B, ZHOU W, et al. Structural characterization of FeO-SiO2-V2O3 slags using molecular dynamics simulations and ft-ir spectroscopy[J]. ISIJ Int, 2016, 56(5): 828-834.

    [27] [27] WANG G H, CUI Y R, YANG Z, et al. Volatilization characteristics of high-lead slag and its influence on measurement of physicochemical properties at high temperature[J]. J Min Metall Sect B: Metall, 2020,56 (1): 59-68.

    [28] [28] LIU R D, ZHANG Y Y, DUAN L B, et al. Effect of Fe2+/Fe3+ ratio on photocatalytic activities of Zn1-xFexO nanoparticles fabricated by the auto combustion method[J]. Ceram Int, 2020, 46(1): 1-7.

    [29] [29] CHEN C Q, REN H J, ZHOU J K, et al. Cu/Fe3O4 catalyst for water gas shift reaction: Insight into the effect of Fe2+ and Fe3+ distribution in Fe3O4[J]. Int J Hydrogen Energy, 2020, 45(15): 8456-8465.

    [30] [30] POPA A, PANA O, STEFAN M, et al. Interplay between ferromagnetism and photocatalytic activity generated by Fe3+ ions in iron doped ZnO nanoparticles grown on MWCNTs[J]. PhyE, 2021, 129(5): 114581.

    [31] [31] TAN P. Active phase, catalytic activity, and induction period of Fe/zeolite material in nonoxidative aromatization of methane[J]. J Catal, 2016, 338(6): 21-29.

    [32] [32] YAMASHITA T, HAYES P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials[J]. ApSS, 2008, 254(8): 2441-2449.

    [33] [33] YUAN G E, QIN Y Z, FENG M Y, et al. Synergistic activation of persulfate by natural chalcocite and ferrous ions by promoting the cycling of Fe3+/Fe2+ couple for degradation of organic pollutants[J]. Ecotoxicol Environ Saf, 2021, 212(4): 111975.

    [34] [34] WANG Z J, SHU Q F, SRIDHAR S, et al. Effect of P2O5 and FetO on the viscosity and slag structure in steelmaking slags[J]. Metall Mater Trans B, 2015, 46(2): 758-765.

    [35] [35] DENG L B, ZHANG X F, ZHANG M M, et al. Effect of CaF2 on viscosity, structure and properties of CaO-Al2O3-MgO-SiO2 slag glass ceramics[J]. J Non-Cryst Solids, 2018, 500(21): 310-316.

    [36] [36] WU T, WANG Q, YU C F, et al. Structural and viscosity properties of CaO-SiO2-Al2O3-FeO slags based on molecular dynamic simulation[J]. J Non-Cryst Solids, 2016, 450(19): 23-31.

    [37] [37] DENG L BO, JIA R D, YUN F, et al. Influence of Cr2O3 on the viscosity and crystallization behavior of glass ceramics based on blast furnace slag[J]. Mater Chem Phys, 2020, 240(1): 122212.

    [43] [43] DE W E, BELLEMANS I, ZHENG L, et al. Origin and sedimentation of Cu-droplets sticking to spinel solids in pyrometallurgical slags[J]. Mater Sci Technol, 2016, 32(18): 1911- 1924.

    [44] [44] ZHANG H W, FU L, QI J B, et al. Physicochemical properties of the molten iron-rich slags related to the copper recovery[J]. Metall Mater Trans B, 2019, 50(4): 1852-1861.

    [45] [45] WANG Y, ZHU R, CHEN Q Z, et al. Recovery of Fe, Ni, Co, and Cu from nickel converter slag through oxidation and reduction[J]. ISIJ Int, 2018, 58(12): 2191-2199.

    [46] [46] GUO X Y, TIAN M, WANG S S, et al. Element distribution in oxygen-enriched bottom-blown smelting of high-arsenic copper dross[J]. Jom, 2019, 71(11): 3941-3948.

    Tools

    Get Citation

    Copy Citation Text

    WANG Guohua, CUI Yaru, SHI Ruimeng, LV Chaofei, LI Xiaoming, ZHAO Junxue, Yang Shufeng. Effect of Fe/SiO2 Ratio on Slag Structure and Separation Characteristic of Slag and Low Nickel Matte[J]. Journal of the Chinese Ceramic Society, 2022, 50(10): 2676

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: May. 13, 2022

    Accepted: --

    Published Online: Jan. 22, 2023

    The Author Email: WANG Guohua (wgh@xauat.edu.cn)

    DOI:10.14062/j.issn.0454-5648.20220398

    Topics