Journal of the Chinese Ceramic Society, Volume. 53, Issue 6, 1492(2025)
A Review of Two–Dimensional Ion Conductors
[1] [1] ROBIN P, KAVOKINE N, BOCQUET L. Modeling of emergent memory and voltage spiking in ionic transport through angstrom-scale slits[J]. Science, 2021, 373(6555): 687–691.
[2] [2] QIN S, LIU D, WANG G, et al. High and stable ionic conductivity in 2D nanofluidic ion channels between boron nitride layers[J]. J Am Chem Soc, 2017, 139(18): 6314–6320.
[3] [3] SHEN J, LIU G P, HAN Y, et al. Artificial channels for confined mass transport at the sub-nanometre scale[J]. Nat Rev Mater, 2021, 6: 294–312.
[4] [4] MUDD G W, MOLAS M R, CHEN X, et al. The direct-to-indirect band gap crossover in two-dimensional van der Waals Indium Selenide crystals[J]. Sci Rep, 2016, 6: 39619.
[5] [5] LEI D D, ZHANG Z, JIANG L. Bioinspired 2D nanofluidic membranes for energy applications[J]. Chem Soc Rev, 2024, 53(5): 2300–2325.
[6] [6] MOGG L, HAO G P, ZHANG S, et al. Atomically thin micas as proton-conducting membranes[J]. Nat Nanotechnol, 2019, 14(10): 962–966.
[7] [7] WAHAB O J, DAVIDDI E, XIN B, et al. Proton transport through nanoscale corrugations in two-dimensional crystals[J]. Nature, 2023, 620(7975): 782–786.
[8] [8] LV R X, KOU W J, GUO S Y, et al. Preparing two-dimensional ordered Li0.33La0.557TiO3 crystal in interlayer channel of thin laminar inorganic solid-state electrolyte towards ultrafast Li+ transfer[J]. Angew Chem Int Ed, 2022, 61(7): e202114220.
[9] [9] YANG J L, ZHANG Y, GE Y Z, et al. Interlayer engineering of layered materials for efficient ion separation and storage[J]. Adv Mater, 2024, 36(18): e2311141.
[10] [10] LAN X X, LUO N, LI Z, et al. Status and prospect of two-dimensional materials in electrolytes for all-solid-state lithium batteries[J]. ACS Nano, 2024, 18(13): 9285–9310.
[11] [11] JUN K, CHEN Y, WEI G, et al. Diffusion mechanisms of fast lithium-ion conductors[J]. Nat Rev Mater, 2024, 9: 887–905.
[12] [12] QIAN X T, CHEN L, YIN L C, et al. CdPS3 nanosheets-based membrane with high proton conductivity enabled by Cd vacancies[J]. Science, 2020, 370(6516): 596–600.
[13] [13] ZHANG H. Ultrathin two-dimensional nanomaterials[J]. ACS Nano, 2015, 9(10): 9451–9469.
[14] [14] MENG D, YANG J L, XIAO C Y, et al. Noncovalent -stacked robust topological organic framework[J]. Proc Natl Acad Sci USA, 2020, 117(34): 20397–20403.
[15] [15] YU M Y, LIU H B, XIAO K F, et al. Redox-mediated proton transport of two-dimensional polyaniline-based nanochannels for fast capacitive performance[J]. Battery Energy, 2022, 1(1): 20210004.
[16] [16] LIU H B, XIAO K F, YU M Y, et al. Hydrogen-bonded quasi-layered polypyrrole-tungstate complex with exceptional electrochemical capacitance over 25000 cycles[J]. Compos Part B Eng, 2022, 238: 109910.
[17] [17] KOLTONOW A R, HUANG J X. Two-dimensional nanofluidics[J]. Science, 2016, 351(6280): 1395–1396.
[18] [18] GUO S Y, SU Y F, YAN K, et al. Robust and adhesive laminar solid electrolyte with homogenous and fast Li-ion conduction for high-performance all-solid-state lithium metal battery[J]. Adv Sci, 2024, 11(30): e2404307.
[19] [19] ZHAO Q, STALIN S, ZHAO C Z, et al. Designing solid-state electrolytes for safe, energy-dense batteries[J]. Nat Rev Mater, 2020, 5: 229–252.
[20] [20] WANG P F, TAO W X, ZHOU T H, et al. Nanoarchitectonics in advanced membranes for enhanced osmotic energy harvesting[J]. Adv Mater, 2024, 36(35): e2404418.
[21] [21] HAO Y W, PANG S, ZHANG X Q, et al. Quantum-confined superfluid reactions[J]. Chem Sci, 2020, 11(37): 10035–10046.
[22] [22] LI G X. Regulating mass transport behavior for high-performance lithium metal batteries and fast-charging lithium-ion batteries[J]. Adv Energy Mater, 2021, 11(7): 2002891.
[23] [23] ZHANG J R, LIU W C, DAI J Q, et al. Nanoionics from biological to artificial systems: An alternative beyond nanoelectronics[J]. Adv Sci, 2022, 9(23): e2200534.
[24] [24] WANG J, CUI Z, LI S Z, et al. Unlocking osmotic energy harvesting potential in challenging real-world hypersaline environments through vermiculite-based hetero-nanochannels[J]. Nat Commun, 2024, 15(1): 608.
[25] [25] TANG W J, TANG S, ZHANG C J, et al. Simultaneously enhancing the thermal stability, mechanical modulus, and electrochemical performance of solid polymer electrolytes by incorporating 2D sheets[J]. Adv Energy Mater, 2018, 8(24): 1800866.
[26] [26] YU X, REN W C. 2D CdPS3-based versatile superionic conductors[J]. Nat Commun, 2023, 14(1): 3998.
[27] [27] ZHANG M, HUANG C H, ZhAI Z F, et al. Nanofluidic ion regulation membranes based on two-dimensional vacancy-containing CdPS3 membrane[J]. J Mater Chem A, 2024, 12(6): 3331–3339.
[28] [28] HU Y M, DUNLAP N, WAN S, et al. Crystalline lithium imidazolate covalent organic frameworks with high Li-ion conductivity[J]. J Am Chem Soc, 2019, 141(18): 7518–7525.
[29] [29] CAO L, LIU X W, SHINDE D B, et al. Oriented two-dimensional covalent organic framework membranes with high ion flux and smart gating nanofluidic transport[J]. Angew Chem Int Ed, 2022, 61(6): e202113141.
[30] [30] WANG J F, ZHANG X M, SHEN R C, et al. Staggered-stacking two-dimensional covalent organic framework membranes for molecular and ionic sieving[J]. ACS Nano, 2024, 18(51): 34698–34707.
[31] [31] WANG Y, SONG L N, WANG X X, et al. Hydrogen-bonded organic frameworks-based electrolytes with controllable hydrogen bonding networks for solid-state lithium batteries[J]. Angew Chem Int Ed, 2024, 63(41): e202401910.
[32] [32] GUO C F, GAO Y, LI S Q, et al. Chemical-stabilized aldehyde-tuned hydrogen-bonded organic frameworks for long-cycle and high-rate sodium-ion organic batteries[J]. Adv Funct Mater, 2024, 34(21): 2314851.
[33] [33] WANG H J, ZHANG Y, WANG J, et al.In situsynthesized HOF ion rectification membrane with ultrahigh permselectivity for nanofluidic osmotic energy harvesting[J]. Adv Funct Mater, 2025, 35(2): 2412477.
[34] [34] LIU X, YE Y X, HE X, et al. Orthogonal postsynthetic copolymerization of hydrogen-bonded organic frameworks into a PolyHOF membrane[J]. Angew Chem Int Ed, 2024, 63(12): e202400195.
[35] [35] RAN F T, XU X Q, PAN D, et al. Ultrathin 2D metal-organic framework nanosheetsin situinterpenetrated by functional CNTs for hybrid energy storage device[J]. Nanomicro Lett, 2020, 12(1): 46.
[36] [36] LIU Y X, WANG S Q, CHEN W C, et al. 5.1 μm ion-regulated rigid quasi-solid electrolyte constructed by bridging fast Li-ion transfer channels for lithium metal batteries[J]. Adv Mater, 2024, 36(28): e2401837.
[37] [37] LIANG R R, FU Y B, HAN Z S, et al. A robust pyrazolate metal–organic framework for integrated perfluorooctanoic acid concentration and degradation[J]. Nat Water, 2024, 2: 1218–1225.
[38] [38] WANG S Y, PIRZADA T, XIE W Y, et al. Creating hierarchically porous banana paper-metal organic framework (MOF) composites with multifunctionality[J]. Appl Mater Today, 2022, 28: 101517.
[39] [39] XIAO K F, PAN J, LIANG K, et al. Layered conductive polymer-inorganic anion network for high-performance ultra-loading capacitive electrodes[J]. Energy Storage Mater, 2018, 14: 90–99.
[40] [40] XIAO K F, JIANG D L, AMAL R, et al. A 2D conductive organic-inorganic hybrid with extraordinary volumetric capacitance at minimal swelling[J]. Adv Mater, 2018, 30(26): e1800400.
[41] [41] LIANG J X, XIAO K F, FANG R P, et al. High volumetric capacity nanoparticle electrodes enabled by nanofluidic fillers[J]. Energy Storage Mater, 2021, 43: 202–211.
[42] [42] ZHOU Y M, XIONG T Y, LU J H, et al. Highly-efficient ion gating through self-assembled two-dimensional photothermal metal-organic framework membrane[J]. Angew Chem Int Ed, 2023, 62(21): e202302997.
[43] [43] WANG Y Q, ZHANG H C, KANG Y, et al. Voltage-gated ion transport in two-dimensional sub-1 nm nanofluidic channels[J]. ACS Nano, 2019, 13(10): 11793–11799.
[44] [44] BUCHSBAUM S F, NGUYEN G, HOWORKA S, et al. DNA-modified polymer pores allow pH- and voltage-gated control of channel flux[J]. J Am Chem Soc, 2014, 136(28): 9902–9905.
[45] [45] WEN L P, LIU Q, MA J, et al. Malachite green derivative–functionalized single nanochannel: Light-and-pH dual-driven ionic gating[J]. Adv Mater, 2012, 24(46): 6193–6198.
[46] [46] HAO J R, WU R, ZHOU J L, et al. Regulation of bioinspired ion diodes: From fundamental study to blue energy harvesting[J]. Nano Today, 2022, 46: 101593.
[47] [47] ZHANG X P, JIA M J, WANG L L, et al. Rectified ion transport through 2D nanofluidic heterojunctions[J]. Phys Status Solidi RRL, 2019, 13(7): 1900129.
[48] [48] SU S H, ZHANG Y F, PENG S Y, et al. Multifunctional graphene heterogeneous nanochannel with voltage-tunable ion selectivity[J]. Nat Commun, 2022, 13(1): 4894.
[49] [49] WANG J, ZHOU H J, LI S Z, et al. Selective ion transport in two-dimensional lamellar nanochannel membranes[J]. Angew Chem Int Ed, 2023, 62(19): e202218321.
[50] [50] RAZMJOU A, ASADNIA M, HOSSEINI E, et al. Design principles of ion selective nanostructured membranes for the extraction of lithium ions[J]. Nat Commun, 2019, 10(1): 5793.
[51] [51] XIAO K, JIANG L, ANTONIETTI M. Ion transport in nanofluidic devices for energy harvesting[J]. Joule, 2019, 3(10): 2364–2380.
[52] [52] ZHANG Z, BHAURIYAL P, SAHABUDEEN H, et al. Cation-selective two-dimensional polyimine membranes for high-performance osmotic energy conversion[J]. Nat Commun, 2022, 13(1): 3935.
[53] [53] SHAO J J, RAIDONGIA K, KOLTONOW A R, et al. Self-assembled two-dimensional nanofluidic proton channels with high thermal stability[J]. Nat Commun, 2015, 6: 7602.
[54] [54] AUGUSTYN V, COME J, LOWE M A, et al. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance[J]. Nat Mater, 2013, 12(6): 518–522.
[55] [55] MENG C C, DING B F, ZHANG S Z, et al. Angstrom-confined catalytic water purification within Co-TiOx laminar membrane nanochannels[J]. Nat Commun, 2022, 13(1): 4010.
[56] [56] LEE A A, KONDRAT S, VELLA D, et al. Dynamics of ion transport in ionic liquids[J]. Phys Rev Lett, 2015, 115(10): 106101.
[57] [57] LISY J M. Spectroscopy and structure of solvated alkali-metal ions[J]. Int Rev Phys Chem, 1997, 16(3): 267–289.
[58] [58] LEE A A, PEREZ-MARTINEZ C S, SMITH A M, et al. Scaling analysis of the screening length in concentrated electrolytes[J]. Phys Rev Lett, 2017, 119(2): 026002.
[59] [59] XUE Y H, XIA Y, YANG S, et al. Atomic-scale ion transistor with ultrahigh diffusivity[J]. Science, 2021, 372(6541): 501–503.
[60] [60] ZHANG H C, LI X Y, HOU J, et al. Angstrom-scale ion channels towards single-ion selectivity[J]. Chem Soc Rev, 2022, 51(6): 2224–2254.
[61] [61] FUMAGALLI L, ESFANDIAR A, FABREGAS R, et al. Anomalously low dielectric constant of confined water[J]. Science, 2018, 360(6395): 1339–1342.
[62] [62] RIES L, PETIT E, MICHEL T, et al. Enhanced sieving from exfoliated MoS2 membranesviacovalent functionalization[J]. Nat Mater, 2019, 18(10): 1112–1117.
[63] [63] NIE L N, GOH K, WANG Y, et al. Realizing small-flake graphene oxide membranes for ultrafast size-dependent organic solvent nanofiltration[J]. Sci Adv, 2020, 6(17): eaaz9184.
[64] [64] ABRAHAM J, VASU K S, WILLIAMS C D, et al. Tunable sieving of ions using graphene oxide membranes[J]. Nat Nanotechnol, 2017, 12(6): 546–550.
[65] [65] CHEN L, SHI G S, SHEN J, et al. Ion sieving in graphene oxide membranesviacationic control of interlayer spacing[J]. Nature, 2017, 550(7676): 380–383.
[66] [66] WU Z H, WANG M D, LIU X Y, et al. Spatial size manipulation of 1D/2D channels in covalent organic framework membranes through dopamine chemistry for ion separations[J]. Adv Funct Mater, 2025, 35(9): 2416228.
[67] [67] ZHAN H L, XIONG Z Y, CHENG C, et al. Solvation-involved nanoionics: New opportunities from 2D nanomaterial laminar membranes[J]. Adv Mater, 2020, 32(18): e1904562.
[68] [68] YU X, REN W C. Two-dimensional nanofluidic channels towards ion transport[J]. Natl Sci Open, 2023, 2(4): 20230013.
[69] [69] HIRUNPINYOPAS W, IAMPRASERTKUN P, BISSETT M A, et al. Tunable charge/size selective ion sieving with ultrahigh water permeance through laminar graphene membranes[J]. Carbon, 2020, 156: 119–129.
[70] [70] ZHANG Z, ZHANG P P, YANG S, et al. Oxidation promoted osmotic energy conversion in black phosphorus membranes[J]. Proc Natl Acad Sci USA, 2020, 117(25): 13959–13966.
[71] [71] YU X, QIAN X T, WEI Q W, et al. Superhigh and robust ion selectivity in membranes assembled with monolayer clay nanosheets[J]. Small, 2023, 19(35): 2300338.
[72] [72] KANG Y, XIA Y, WANG H T, et al. 2D laminar membranes for selective water and ion transport[J]. Adv Funct Mater, 2019, 29(29): 1902014.
[73] [73] HU C Y, ACHARI A, ROWE P, et al. pH-dependent water permeability switching and its memory in MoS2 membranes[J]. Nature, 2023, 616(7958): 719–723.
[74] [74] HONG S, CONSTANS C, SURMANI MARTINS M V, et al. Scalable graphene-based membranes for ionic sieving with ultrahigh charge selectivity[J]. Nano Lett, 2017, 17(2): 728–732.
[75] [75] HINDS B J. Engineering small-ion transporter channels[J]. Science, 2021, 372(6541): 459–460.
[76] [76] JIA P, WANG L L, ZHANG Y H, et al. Harnessing ionic power from equilibrium electrolyte solutionviaphotoinduced active ion transport through van-der-waals-like heterostructures[J]. Adv Mater, 2021, 33(14): e2007529.
[77] [77] MA W T, KUMAR S R, HSU C T, et al. Magnetic field-assisted alignment of graphene oxide nanosheets in a polymer matrix to enhance ionic conduction[J]. J Membr Sci, 2018, 563: 259–269.
[78] [78] JIANG Y N, MA W J, QIAO Y J, et al. Metal-organic framework membrane nanopores as biomimetic photoresponsive ion channels and photodriven ion pumps[J]. Angew Chem Int Ed, 2020, 59(31): 12795–12799.
[79] [79] JI J Z, KANG Q, ZHOU Y, et al. Osmotic power generation with positively and negatively charged 2D nanofluidic membrane pairs[J]. Adv Funct Mater, 2017, 27(2): 1603623.
[80] [80] ZHU C C, LIU P, NIU B, et al. Metallic two-dimensional MoS2 composites as high-performance osmotic energy conversion membranes[J]. J Am Chem Soc, 2021, 143(4): 1932–1940.
[81] [81] DING L, XIAO D, LU Z, et al. Oppositely charged Ti3C2Tx MXene membranes with 2D nanofluidic channels for osmotic energy harvesting[J]. Angew Chem Int Ed, 2020, 59(22): 8720–8726.
[82] [82] HONG S, MING F W, SHI Y, et al. Two-dimensional Ti3C2Tx MXene membranes as nanofluidic osmotic power generators[J]. ACS Nano, 2019, 13(8): 8917–8925.
[83] [83] XIAO Y, XIONG C Y, CHEN M M, et al. Structure modulation of two-dimensional transition metal chalcogenides: Recent advances in methodology, mechanism and applications[J]. Chem Soc Rev, 2023, 52(4): 1215–1272.
[84] [84] BONACCORSO F, LOMBARDO A, HASAN T, et al. Production and processing of graphene and 2d crystals[J]. Mater Today, 2012, 15(12): 564–589.
[85] [85] ITON Z W B, SEE K A. Multivalent ion conduction in inorganic solids[J]. Chem Mater, 2022, 34(3): 881–898.
[86] [86] ESFANDIAR A, RADHA B, WANG F C, et al. Size effect in ion transport through angstrom-scale slits[J]. Science, 2017, 358(6362): 511–513.
[87] [87] LIU L Y, CHEN W D, LI Y Q. An overview of the proton conductivity of nafion membranes through a statistical analysis[J]. J Membr Sci, 2016, 504: 1–9.
[88] [88] KARIM M R, HATAKEYAMA K, MATSUI T, et al. Graphene oxide nanosheet with high proton conductivity[J]. J Am Chem Soc, 2013, 135(22): 8097–8100.
[89] [89] GENG K Y, HE T, LIU R Y, et al. Covalent organic frameworks: Design, synthesis, and functions[J]. Chem Rev, 2020, 120(16): 8814–8933.
[90] [90] LIU Y, CHANG G G, ZHENG F, et al. Hybrid hydrogen-bonded organic frameworks: Structures and functional applications[J]. Chemistry, 2023, 29(14): e202202655.
[91] [91] YI L Z, GAO Y J, LUO S M, et al. Structure evolution of 2D covalent organic frameworks unveiled by single-crystal X-ray diffraction[J]. J Am Chem Soc, 2024, 146(29): 19643–19648.
[92] [92] LI J, ZHOU X, WANG J, et al. Two-dimensional covalent organic frameworks (COFs) for membrane separation: A mini review[J]. Ind Eng Chem Res, 2019, 58(34): 15394–15406.
[93] [93] LIN Q W, KUNDU D P, SKYLLAS-KAZACOS M, et al. Perspective on lewis acid-base interactions in emerging batteries[J]. Adv Mater, 2024, 36(42): e2406151.
[94] [94] ZHANG H Y, GENG Y B, HUANG J, et al. Charge and mass transport mechanisms in two-dimensional covalent organic frameworks (2D COFs) for electrochemical energy storage devices[J]. Energy Environ Sci, 2023, 16(3): 889–951.
[95] [95] NIU C Q, LUO W J, DAI C M, et al. High-voltage-tolerant covalent organic framework electrolyte with holistically oriented channels for solid-state lithium metal batteries with nickel-rich cathodes[J]. Angew Chem Int Ed, 2021, 60(47): 24915–24923.
[96] [96] LI X, LOH K P. Recent progress in covalent organic frameworks as solid-state ion conductors[J]. ACS Mater Lett, 2019, 1(3): 327–335.
[97] [97] LI X, HOU Q, HUANG W, et al. Solution-processable covalent organic framework electrolytes for all-solid-state Li–organic batteries[J]. ACS Energy Lett, 2020, 5(11): 3498–3506.
[98] [98] YANG J L, LI L S, TANG Z Y. An efficient lithium extraction pathway in covalent organic framework membranes[J]. Matter, 2021, 4(7): 2114–2116.
[99] [99] SUN Q, SONG Z Y, DU J C, et al. Covalent organic framework membranes with regulated orientation for monovalent cation sieving[J]. ACS Nano, 2024, 18(39): 27065–27076.
[100] [100] LIN R B, CHEN B L. Hydrogen-bonded organic frameworks: Chemistry and functions[J]. Chem, 2022, 8(8): 2114–2135.
[101] [101] HU F L, LIU C P, WU M Y, et al. An ultrastable and easily regenerated hydrogen-bonded organic molecular framework with permanent porosity[J]. Angew Chem Int Ed, 2017, 56(8): 2101–2104.
[102] [102] CHEN T H, POPOV I, KAVEEVIVITCHAI W, et al. Thermally robust and porous noncovalent organic framework with high affinity for fluorocarbons and CFCs[J]. Nat Commun, 2014, 5: 5131.
[103] [103] YAGHI O M, LI G M, LI H L. Selective binding and removal of guests in a microporous metal–organic framework[J]. Nature, 1995, 378: 703–706.
[104] [104] YE Z Q, JIANG Y, LI L, et al. Rational design of MOF-based materials for next-generation rechargeable batteries[J]. Nanomicro Lett, 2021, 13(1): 203.
[105] [105] NOBAKHT N, AHMAD ETGHANI S, HOSSEINI M, et al. Two-dimensional MOF-based materials: Preparations and applications as electrodes in Li-ion batteries[J]. J Energy Chem, 2024, 97: 388–418.
[106] [106] JANA M, XU R, CHENG X B, et al. Rational design of two-dimensional nanomaterials for lithium–sulfur batteries[J]. Energy Environ Sci, 2020, 13(4): 1049–1075.
[107] [107] XIONG D Y, DENG X L, CAO Z W, et al. 2D metal–organic frameworks for electrochemical energy storage[J]. Energy Environ Mater, 2023, 6(6): e12521.
[108] [108] LI X M, SHAO J Y, KIM S K, et al. High energy flexible supercapacitors formedviabottom-up infilling of gel electrolytes into thick porous electrodes[J]. Nat Commun, 2018, 9(1): 2578.
[109] [109] LI Z N, GADIPELLI S, LI H C, et al. Tuning the interlayer spacing of graphene laminate films for efficient pore utilization towards compact capacitive energy storage[J]. Nat Energy, 2020, 5: 160–168.
[110] [110] XIAO K F, YANG T M, LIANG J X, et al. Nanofluidic voidless electrode for electrochemical capacitance enhancement in gel electrolyte[J]. Nat Commun, 2021, 12(1): 5515.
[111] [111] LIANG J X, RAWAL A, WANG B Y, et al. Nanoconfined supercooled water in hydrated two-dimensional polyaniline for sub-zero solid-state zinc-ion hybrid capacitor[J]. Small, 2024, 20(46): e2402016.
[112] [112] LIU H B, LIANG J X, WATT J, et al. Wafer-scale quasi-layered tungstate-doped polypyrrole film with high volumetric capacitance[J]. Nano Res, 2023, 16(4): 4895–4900.
[113] [113] YANG X C, LIANG J X, RAWAL A, et al. 2D polyaniline with exchangeable interlayer fluid for fast and stable volumetric dual ion storage[J]. J Energy Chem, 2021, 54: 587–594.
[114] [114] XIAO K F, LIANG J X, LIU H B, et al. Mechanically improving ion diffusion in layered conducting polymers for compact energy storage[J]. ACS Energy Lett, 2024, 9(6): 2564–2571.
[115] [115] LIANG J X, LIN Q W, RAWAL A, et al. Ionic conductive polymer stabilized cathode–electrolyte interface for quasi-solid-state dual-ion battery[J]. ACS Energy Lett, 2024, 9(3): 1082–1089.
[116] [116] PAN S Y, HAN J W, WANG Y Q, et al. Integrating SEI into layered conductive polymer coatings for ultrastable silicon anodes[J]. Adv Mater, 2022, 34(31): e2203617.
[117] [117] LIANG J Y, YU M Y, LIU J, et al. Energy storing plant stem with cytocompatibility for supercapacitor electrode[J]. Adv Funct Mater, 2021, 31(52): 2106787.
[118] [118] LIN Q W, LIANG J X, FANG R P, et al. A lewis acid–lewis base hybridized electrocatalyst for roundtrip sulfur conversion in lithium–sulfur batteries[J]. Adv Energy Mater, 2024, 14(21): 2400786.
[119] [119] CUI Y, XIAO K F, BEDFORD N M, et al. Refilling nitrogen to oxygen vacancies in ultrafine tungsten oxide clusters for superior lithium storage[J]. Adv Energy Mater, 2019, 9(37): 1902148.
[120] [120] CUI Y, TAN X, XIAO K F, et al. Tungsten oxide/carbide surface heterojunction catalyst with high hydrogen evolution activity[J]. ACS Energy Lett, 2020, 5(11): 3560–3568.
[121] [121] MAO Z F, WANG R, HE B B, et al. Cross-linked sodium alginate as A multifunctional binder to achieve high-rate and long-cycle stability for sodium-ion batteries[J]. Small, 2023, 19(11): e2207224.
[122] [122] YANG Y H, LI Z F, YANG Z L, et al. Ultrafast lithium-ion transport engineered by nanoconfinement effect[J]. Adv Mater, 2025, 37(8): 2416266.
[123] [123] MENG X Y, PENG Q W, PENG L M, et al.In situgrowth of covalent organic framework on graphene oxide nanosheet enable proton-selective transport in flow battery membrane[J]. J Power Sources, 2024, 609: 234690.
[124] [124] LUO K G, HUANG T, LI Q, et al. Nanofluidic proton channels based on a 2D layered glass membrane with improved aqueous and acid stability[J]. RSC Adv, 2022, 12(46): 29640–29646.
[125] [125] YANG B, YANG Z Q, ZHANG X Q, et al. High modulus Na2SiO3-rich solid electrolyte interphase enable long-cycle and energy-dense sodium metal battery[J]. Adv Funct Mater, 2024, 34(46): 2407783.
[126] [126] ZHANG Y F, HUANG J J, LIU H, et al. Lamellar ionic liquid composite electrolyte for wide-temperature solid-state lithium-metal battery[J]. Adv Energy Mater, 2023, 13(23): 2370100.
[127] [127] ZHAO G F, XU L F, JIANG J W, et al. COFs-based electrolyte accelerates the Na+ diffusion and restrains dendrite growth in quasi-solid-state organic batteries[J]. Nano Energy, 2022, 92: 106756.
[128] [128] GUO Z C, SHI Z Q, WANG X Y, et al. Proton conductive covalent organic frameworks[J]. Coord Chem Rev, 2020, 422: 213465.
[129] [129] HUANG Q Y, LI W L, MAO Z, et al. Dynamic molecular weaving in a two-dimensional hydrogen-bonded organic framework[J]. Chem, 2021, 7(5): 1321–1332.
[130] [130] WANG C, YANG Z R, WU W J, et al. Two-dimensional acid–base hydrogen-bonded organic framework toward a highly conductive proton exchange membrane[J]. Chem Mater, 2024, 36(17): 8255–8263.
[131] [131] XU L H, LI Y, LI S H, et al. Space-confined growth of 2D MOF sheets between GO layers at room temperature for superior PDMS membrane-based ester/water separation[J]. J Membr Sci, 2022, 656: 120605.
[132] [132] FAN Y P, CHANG Z, WU Z H, et al. Nano-confined electrolyte for sustainable sodium-ion batteries[J]. Adv Funct Mater, 2024, 34(23): 2314288.
[133] [133] HE X L, SHAO B, HUANG R K, et al. A mixed protonic–electronic conductor base on the host–guest architecture of 2D metal–organic layers and inorganic layers[J]. Adv Sci, 2023, 10(17): 2205944.
[134] [134] LUO J, QIAO R S, DING B F. Enhancement of ion selectivity and permeability in two-dimensional material membranes[J]. Matter, 2024, 7(10): 3351–3389.
[135] [135] XU H, DING B F, XU Y A, et al. Magnetically tunable and stable deep-ultraviolet birefringent optics using two-dimensional hexagonal boron nitride[J]. Nat Nanotechnol, 2022, 17(10): 1091–1096.
[136] [136] DING B F, KUANG W J, PAN Y K, et al. Giant magneto-birefringence effect and tuneable colouration of 2D crystal suspensions[J]. Nat Commun, 2020, 11(1): 3725.
[137] [137] JI Y C, YIN Z W, YANG Z Z, et al. From bulk to interface: Electrochemical phenomena and mechanism studies in batteriesviaelectrochemical quartz crystal microbalance[J]. Chem Soc Rev, 2021, 50(19): 10743–10763.
[138] [138] ZOU K H, LING H Y, WANG Q C, et al. Turing-type nanochannel membranes with extrinsic ion transport pathways for high-efficiency osmotic energy harvesting[J]. Nat Commun, 2024, 15(1): 10231.
[139] [139] CHEN H L, JIANG F, HU C, et al. Electron-catalyzed dehydrogenation in a single-molecule junction[J]. J Am Chem Soc, 2021, 143(22): 8476–8487.
[140] [140] YANG F F, WANG X L, TIAN J Y, et al. Vitrification-enabled enhancement of proton conductivity in hydrogen-bonded organic frameworks[J]. Nat Commun, 2024, 15(1): 3930.
Get Citation
Copy Citation Text
CUI Hongyu, LIN Qiaowei, SUN Pengzhan, WANG Da-Wei, CHENG Hui-Ming. A Review of Two–Dimensional Ion Conductors[J]. Journal of the Chinese Ceramic Society, 2025, 53(6): 1492
Category:
Received: Dec. 31, 2024
Accepted: Jul. 11, 2025
Published Online: Jul. 11, 2025
The Author Email: WANG Da-Wei (da.wei.wang@outlook.com)