Acta Optica Sinica, Volume. 43, Issue 16, 1623011(2023)

Wireless Power Transfer and Sensing Based on Non-Hermitian Topological Effects

Zhiwei Guo1,2、*, Shengyu Hu1, Haiyan Zhang1, Yuqian Wang1, Lijuan Dong2, Yong Sun1, Yunhui Li1, Haitao Jiang1, Yaping Yang1, and Hong Chen1,2、**
Author Affiliations
  • 1Key Laboratory of Advanced Micro-Structure Materials, Ministry of Education, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
  • 2Shanxi Provincial Key Laboratory of Microstructure Electromagnetic Functional Materials, School of Physics and Electronic Science, Shanxi Datong University, Datong 037009, Shanxi, China
  • show less
    References(114)

    [1] Xiao D, Chang M C, Niu Q A. Berry phase effects on electronic properties[J]. Reviews of Modern Physics, 82, 1959-2007(2010).

    [2] Hasan M Z, Kane C L. Colloquium: topological insulators[J]. Reviews of Modern Physics, 82, 3045-3067(2010).

    [3] Qi X L, Zhang S C. Topological insulators and superconductors[J]. Reviews of Modern Physics, 83, 1057-1110(2011).

    [4] Lu L, Joannopoulos J D, Soljačić M. Topological photonics[J]. Nature Photonics, 8, 821-829(2014).

    [5] Ozawa T, Price H M, Amo A et al. Topological photonics[J]. Reviews of Modern Physics, 91, 015006(2019).

    [6] Chen J F, Liang W Y, Li Z Y. Progress of topological photonic state in magneto-optical photonic crystal[J]. Acta Optica Sinica, 41, 0823015(2021).

    [7] Bergholtz E J, Budich J C, Kunst F K. Exceptional topology of non-Hermitian systems[J]. Reviews of Modern Physics, 93, 015005(2021).

    [8] El-Ganainy R, Makris K G, Khajavikhan M et al. Non-Hermitian physics and PT symmetry[J]. Nature Physics, 14, 11-19(2018).

    [9] Feng L, El-Ganainy R, Ge L. Non-Hermitian photonics based on parity-time symmetry[J]. Nature Photonics, 11, 752-762(2017).

    [10] Özdemir Ş K, Rotter S, Nori F et al. Parity–time symmetry and exceptional points in photonics[J]. Nature Materials, 18, 783-798(2019).

    [11] Miri M A, Alù A. Exceptional points in optics and photonics[J]. Science, 363, eaar7709(2019).

    [12] Guo A, Salamo G J, Duchesne D et al. Observation of PT-symmetry breaking in complex optical potentials[J]. Physical Review Letters, 103, 093902(2009).

    [13] Doppler J, Mailybaev A A, Böhm J et al. Dynamically encircling an exceptional point for asymmetric mode switching[J]. Nature, 537, 76-79(2016).

    [14] Lafalce E, Zeng Q J, Lin C H et al. Robust lasing modes in coupled colloidal quantum dot microdisk pairs using a non-Hermitian exceptional point[J]. Nature Communications, 10, 561(2019).

    [15] Zhu B F, Wang Q A, Leykam D et al. Anomalous single-mode lasing induced by nonlinearity and the non-Hermitian skin effect[J]. Physical Review Letters, 129, 013903(2022).

    [16] Xu H, Mason D, Jiang L Y et al. Topological energy transfer in an optomechanical system with exceptional points[J]. Nature, 537, 80-83(2016).

    [17] Assawaworrarit S, Yu X F, Fan S H. Robust wireless power transfer using a nonlinear parity-time-symmetric circuit[J]. Nature, 546, 387-390(2017).

    [18] Liu Q J, Li S Y, Wang B et al. Efficient mode transfer on a compact silicon chip by encircling moving exceptional points[J]. Physical Review Letters, 124, 153903(2020).

    [19] Li A D, Chen W J, Wei H et al. Riemann-encircling exceptional points for efficient asymmetric polarization-locked devices[J]. Physical Review Letters, 129, 127401(2022).

    [20] Zhong Q, Khajavikhan M, Christodoulides D N et al. Winding around non-Hermitian singularities[J]. Nature Communications, 9, 4808(2018).

    [21] Zhou H Y, Peng C, Yoon Y et al. Observation of bulk Fermi arc and polarization half charge from paired exceptional points[J]. Science, 359, 1009-1012(2018).

    [22] Zhen B, Hsu C W, Igarashi Y et al. Spawning rings of exceptional points out of Dirac cones[J]. Nature, 525, 354-358(2015).

    [23] Cerjan A, Huang S, Wang M H et al. Experimental realization of a Weyl exceptional ring[J]. Nature Photonics, 13, 623-628(2019).

    [24] Yao S Y, Wang Z. Edge states and topological invariants of non-Hermitian systems[J]. Physical Review Letters, 121, 086803(2018).

    [25] Song W G, Sun W Z, Chen C et al. Breakup and recovery of topological zero modes in finite non-Hermitian optical lattices[J]. Physical Review Letters, 123, 165701(2019).

    [26] Weimann S, Kremer M, Plotnik Y et al. Topologically protected bound states in photonic parity-time-symmetric crystals[J]. Nature Materials, 16, 433-438(2017).

    [27] Poli C, Bellec M, Kuhl U et al. Selective enhancement of topologically induced interface states in a dielectric resonator chain[J]. Nature Communications, 6, 6710(2015).

    [28] Zhao H, Miao P, Teimourpour M H et al. Topological hybrid silicon microlasers[J]. Nature Communications, 9, 981(2018).

    [29] Parto M, Wittek S, Hodaei H et al. Edge-mode lasing in 1D topological active arrays[J]. Physical Review Letters, 120, 113901(2018).

    [30] Fu T, Wang Y F, Wang X Y et al. Microstructure lasers based on parity-time symmetry and supersymmetry[J]. Chinese Journal of Lasers, 48, 1201005(2021).

    [31] Weidemann S, Kremer M, Helbig T et al. Topological funneling of light[J]. Science, 368, 311-314(2020).

    [32] Li Y H, Liang C, Wang C Y et al. Gain-loss-induced hybrid skin-topological effect[J]. Physical Review Letters, 128, 223903(2022).

    [33] Luo X W, Zhang C W. Higher-order topological corner states induced by gain and loss[J]. Physical Review Letters, 123, 073601(2019).

    [34] Ao Y T, Hu X Y, You Y L et al. Topological phase transition in the non-Hermitian coupled resonator array[J]. Physical Review Letters, 125, 013902(2020).

    [35] Guo Z W, Wu X, Sun Y et al. Anomalous broadband Floquet topological metasurface with pure site rings[J]. Advanced Photonics Nexus, 2, 016006(2023).

    [36] Hui S Y R, Ho W C. A new generation of universal contactless battery charging platform for portable consumer electronic equipment[J]. IEEE Transactions on Power Electronics, 20, 620-627(2005).

    [37] Urzhumov Y, Smith D R. Metamaterial-enhanced coupling between magnetic dipoles for efficient wireless power transfer[J]. Physical Review B, 83, 205114(2011).

    [38] Wu Q, Li Y H, Gao N et al. Wireless power transfer based on magnetic metamaterials consisting of assembled ultra-subwavelength meta-atoms[J]. EPL (Europhysics Letters), 109, 68005(2015).

    [39] Song M Z, Baryshnikova K, Markvart A et al. Smart table based on a metasurface for wireless power transfer[J]. Physical Review Applied, 11, 054046(2019).

    [40] Chen Y Q, Guo Z W, Wang Y Q et al. Experimental demonstration of the magnetic field concentration effect in circuit-based magnetic near-zero index media[J]. Optics Express, 28, 17064-17075(2020).

    [41] Cannon B L, Hoburg J F, Stancil D D et al. Magnetic resonant coupling as a potential means for wireless power transfer to multiple small receivers[J]. IEEE Transactions on Power Electronics, 24, 1819-1825(2009).

    [42] Sample A P, Meyer D T, Smith J R. Analysis, experimental results, and range adaptation of magnetically coupled resonators for wireless power transfer[J]. IEEE Transactions on Industrial Electronics, 58, 544-554(2011).

    [43] Wang B N, Teo K H, Nishino T et al. Experiments on wireless power transfer with metamaterials[J]. Applied Physics Letters, 98, 254101(2011).

    [44] Kim J W, Son H C, Kim K H et al. Efficiency analysis of magnetic resonance wireless power transfer with intermediate resonant coil[J]. IEEE Antennas and Wireless Propagation Letters, 10, 389-392(2011).

    [45] Ho J S, Yeh A J, Neofytou E et al. Wireless power transfer to deep-tissue microimplants[J]. Proceedings of the National Academy of Sciences of the United States of America, 111, 7974-7979(2014).

    [46] Mei H, Irazoqui P P. Miniaturizing wireless implants[J]. Nature Biotechnology, 32, 1008-1010(2014).

    [47] Patil D, McDonough M K, Miller J M et al. Wireless power transfer for vehicular applications: overview and challenges[J]. IEEE Transactions on Transportation Electrification, 4, 3-37(2018).

    [48] Krasnok A, Baranov D G, Generalov A et al. Coherently enhanced wireless power transfer[J]. Physical Review Letters, 120, 143901(2018).

    [49] Saha C, Anya I, Alexandru C et al. Wireless power transfer using relay resonators[J]. Applied Physics Letters, 112, 263902(2018).

    [50] Badowich C, Markley L. Idle power loss suppression in magnetic resonance coupling wireless power transfer[J]. IEEE Transactions on Industrial Electronics, 65, 8605-8612(2018).

    [51] Zhou J L, Zhang B, Xiao W X et al. Nonlinear parity-time-symmetric model for constant efficiency wireless power transfer: application to a drone-in-flight wireless charging platform[J]. IEEE Transactions on Industrial Electronics, 66, 4097-4107(2019).

    [52] Wu L H, Zhang B, Zhou J L. Efficiency improvement of the parity-time-symmetric wireless power transfer system for electric vehicle charging[J]. IEEE Transactions on Power Electronics, 35, 12497-12508(2020).

    [53] Lerosey G. Wireless power on the move[J]. Nature, 546, 354-355(2017).

    [54] Assawaworrarit S, Fan S H. Robust and efficient wireless power transfer using a switch-mode implementation of a nonlinear parity–time symmetric circuit[J]. Nature Electronics, 3, 273-279(2020).

    [55] Li H C, Li J, Wang K P et al. A maximum efficiency point tracking control scheme for wireless power transfer systems using magnetic resonant coupling[J]. IEEE Transactions on Power Electronics, 30, 3998-4008(2015).

    [56] Sakhdari M, Hajizadegan M, Chen P Y. Robust extended-range wireless power transfer using a higher-order PT-symmetric platform[J]. Physical Review Research, 2, 013152(2020).

    [57] Zeng C, Guo Z W, Zhu K J et al. Efficient and stable wireless power transfer based on the non-Hermitian physics[J]. Chinese Physics B, 31, 010307(2022).

    [58] Song M Z, Jayathurathnage P, Zanganeh E et al. Wireless power transfer based on novel physical concepts[J]. Nature Electronics, 4, 707-716(2021).

    [59] Zhong W X, Lee C K, Hui S Y R. General analysis on the use of tesla’s resonators in domino forms for wireless power transfer[J]. IEEE Transactions on Industrial Electronics, 60, 261-270(2013).

    [60] Su W P, Schrieffer J R, Heeger A J. Solitons in polyacetylene[J]. Physical Review Letters, 42, 1698-1701(1979).

    [61] Jiang J, Guo Z W, Ding Y Q et al. Experimental demonstration of the robust edge states in a split-ring-resonator chain[J]. Optics Express, 26, 12891-12902(2018).

    [62] Jiang J, Ren J E, Guo Z W et al. Seeing topological winding number and band inversion in photonic dimer chain of split-ring resonators[J]. Physical Review B, 101, 165427(2020).

    [63] Smirnova D, Leykam D, Chong Y D et al. Nonlinear topological photonics[J]. Applied Physics Reviews, 7, 021306(2020).

    [64] Ota Y, Takata K, Ozawa T et al. Active topological photonics[J]. Nanophotonics, 9, 547-567(2020).

    [65] Song J A, Yang F Q, Guo Z W et al. Wireless power transfer via topological modes in dimer chains[J]. Physical Review Applied, 15, 014009(2021).

    [66] Kurs A, Karalis A, Moffatt R et al. Wireless power transfer via strongly coupled magnetic resonances[J]. Science, 317, 83-86(2007).

    [67] Karalis A, Joannopoulos J D, Soljačić M. Efficient wireless non-radiative mid-range energy transfer[J]. Annals of Physics, 323, 34-48(2008).

    [68] Guo Z W, Jiang H T, Li Y H et al. Enhancement of electromagnetically induced transparency in metamaterials using long range coupling mediated by a hyperbolic material[J]. Optics Express, 26, 627-641(2018).

    [69] Chen X, Wang Y Q, Guo Z W et al. Significant enhancement of magnetic shielding effect by using the composite metamaterial composed of mu-near-zero media and ferrite[J]. EPJ Applied Metamaterials, 8, 13(2021).

    [70] Chen X, Guo Z W, Jiang J et al. Ultra-broadband near-field magnetic shielding realized by the Halbach-like structure[J]. Applied Physics Letters, 120, 192201(2022).

    [71] Budhia M, Covic G A, Boys J T. Design and optimization of circular magnetic structures for lumped inductive power transfer systems[J]. IEEE Transactions on Power Electronics, 26, 3096-3108(2011).

    [72] Kim J, Kim J, Kong S et al. Coil design and shielding methods for a magnetic resonant wireless power transfer system[J]. Proceedings of the IEEE, 101, 1332-1342(2013).

    [73] Batra T, Schaltz E. Passive shielding effect on space profile of magnetic field emissions for wireless power transfer to vehicles[J]. Journal of Applied Physics, 117, 17A739(2015).

    [74] Park H H, Kwon J H, Kwak S I et al. Effect of air-gap between a ferrite plate and metal strips on magnetic shielding[J]. IEEE Transactions on Magnetics, 51, 9(2015).

    [75] Guo Z W, Long Y, Jiang H T et al. Anomalous unidirectional excitation of high-k hyperbolic modes using all-electric metasources[J]. Advanced Photonics, 3, 036001(2021).

    [76] Feis J, Stevens C J, Shamonina E. Wireless power transfer through asymmetric topological edge states in diatomic chains of coupled meta-atoms[J]. Applied Physics Letters, 117, 134106(2020).

    [77] Zhang L, Yang Y H, Jiang Z et al. Demonstration of topological wireless power transfer[J]. Science Bulletin, 66, 974-980(2021).

    [78] Guo Z W, Jiang J, Jiang H T et al. Observation of topological bound states in a double Su-Schrieffer-Heeger chain composed of split ring resonators[J]. Physical Review Research, 3, 013122(2021).

    [79] Huang Q S, Guo Z W, Feng J T et al. Observation of a topological edge state in the X-ray band[J]. Laser & Photonics Reviews, 13, 1800339(2019).

    [80] Yang F Q, Song J A, Guo Z W et al. Actively controlled asymmetric edge states for directional wireless power transfer[J]. Optics Express, 29, 7844-7857(2021).

    [81] Guo Z W, Jiang H T, Sun Y et al. Asymmetric topological edge states in a quasiperiodic Harper chain composed of split-ring resonators[J]. Optics Letters, 43, 5142-5145(2018).

    [82] Liu X L, Agarwal G S. The new phases due to symmetry protected piecewise berry phases; enhanced pumping and non-reciprocity in trimer lattices[J]. Scientific Reports, 7, 45015(2017).

    [83] Kartashov Y V, Arkhipova A A, Zhuravitskii S A et al. Observation of edge solitons in topological trimer arrays[J]. Physical Review Letters, 128, 093901(2022).

    [84] Guo Z W, Wu X A, Ke S L et al. Rotation controlled topological edge states in a trimer chain composed of meta-atoms[J]. New Journal of Physics, 24, 063001(2022).

    [85] Peterson C W, Li T H, Benalcazar W A et al. A fractional corner anomaly reveals higher-order topology[J]. Science, 368, 1114-1118(2020).

    [86] Chen Y F, Meng F, Kivshar Y et al. Inverse design of higher-order photonic topological insulators[J]. Physical Review Research, 2, 023115(2020).

    [87] Wang H X, Lin Z K, Jiang B et al. Higher-order Weyl semimetals[J]. Physical Review Letters, 125, 146401(2020).

    [88] Ji C Y, Zhang Y Y, Liao Y H et al. Fragile topologically protected perfect reflection for acoustic waves[J]. Physical Review Research, 2, 013131(2020).

    [89] Chen H Z, Liu T, Luan H Y et al. Revealing the missing dimension at an exceptional point[J]. Nature Physics, 16, 571-578(2020).

    [90] Liu T, An S W, Gu Z M et al. Chirality-switchable acoustic vortex emission via non-Hermitian selective excitation at an exceptional point[J]. Science Bulletin, 67, 1131-1136(2022).

    [91] Wiersig J. Enhancing the sensitivity of frequency and energy splitting detection by using exceptional points: application to microcavity sensors for single-particle detection[J]. Physical Review Letters, 112, 203901(2014).

    [92] Hodaei H, Hassan A U, Wittek S et al. Enhanced sensitivity at higher-order exceptional points[J]. Nature, 548, 187-191(2017).

    [93] Chen W J, Kaya Özdemir Ş, Zhao G M et al. Exceptional points enhance sensing in an optical microcavity[J]. Nature, 548, 192-196(2017).

    [94] Dong Z Y, Li Z P, Yang F Y et al. Sensitive readout of implantable microsensors using a wireless system locked to an exceptional point[J]. Nature Electronics, 2, 335-342(2019).

    [95] Zhong Q, Ren J, Khajavikhan M et al. Sensing with exceptional surfaces in order to combine sensitivity with robustness[J]. Physical Review Letters, 122, 153902(2019).

    [96] Xiao Z C, Li H N, Kottos T et al. Enhanced sensing and nondegraded thermal noise performance based on PT-symmetric electronic circuits with a sixth-order exceptional point[J]. Physical Review Letters, 123, 213901(2019).

    [97] Zhang Y J, Kwon H, Miri M A et al. Noninvasive glucose sensor based on parity-time symmetry[J]. Physical Review Applied, 11, 044049(2019).

    [98] Park J H, Ndao A, Cai W et al. Symmetry-breaking-induced plasmonic exceptional points and nanoscale sensing[J]. Nature Physics, 16, 462-468(2020).

    [99] Zeuner J M, Rechtsman M C, Plotnik Y et al. Observation of a topological transition in the bulk of a non-Hermitian system[J]. Physical Review Letters, 115, 040402(2015).

    [100] Zangeneh-Nejad F, Fleury R. Topological Fano resonances[J]. Physical Review Letters, 122, 014301(2019).

    [101] Gao W, Hu X Y, Li C et al. Fano-resonance in one-dimensional topological photonic crystal heterostructure[J]. Optics Express, 26, 8634-8644(2018).

    [102] Imhof S, Berger C, Bayer F et al. Topolectrical-circuit realization of topological corner modes[J]. Nature Physics, 14, 925-929(2018).

    [103] Jia N Y, Owens C, Sommer A et al. Time- and site-resolved dynamics in a topological circuit[J]. Physical Review X, 5, 021031(2015).

    [104] Albert V V, Glazman L I, Jiang L A. Topological properties of linear circuit lattices[J]. Physical Review Letters, 114, 173902(2015).

    [105] Liu S, Ma S J, Zhang Q A et al. Octupole corner state in a three-dimensional topological circuit[J]. Light: Science & Applications, 9, 145(2020).

    [106] Wang Y, Price H M, Zhang B L et al. Circuit implementation of a four-dimensional topological insulator[J]. Nature Communications, 11, 2356(2020).

    [107] Lee C H, Imhof S, Berger C et al. Topolectrical circuits[J]. Communications Physics, 1, 39(2018).

    [108] Lustig E, Segev M. Topological photonics in synthetic dimensions[J]. Advances in Optics and Photonics, 13, 426-461(2021).

    [109] Liu H, Yan Z W, Xiao M et al. Recent progress in synthetic dimension in topological photonics[J]. Acta Optica Sinica, 41, 0123002(2021).

    [110] Guo Z W, Xue H R, Long Y et al. Editorial: non-Hermitian and topological photonics[J]. Frontiers in Physics, 11, 1177898(2023).

    [111] Guo Z W, Lu C C, Lin X A et al. Editorial: optical hyperbolic metamaterials[J]. Frontiers in Materials, 9, 1115744(2022).

    [112] Guo Z W, Zhang T Z, Song J A et al. Sensitivity of topological edge states in a non-Hermitian dimer chain[J]. Photonics Research, 9, 574-582(2021).

    [113] Zanganeh E, Evlyukhin A, Miroshnichenko A et al. Anapole meta-atoms: nonradiating electric and magnetic sources[J]. Physical Review Letters, 127, 096804(2021).

    [114] Hernández-Sarria J J, Oliveira O N, Mejía-Salazar J R. Toward lossless infrared optical trapping of small nanoparticles using nonradiative anapole modes[J]. Physical Review Letters, 127, 186803(2021).

    Tools

    Get Citation

    Copy Citation Text

    Zhiwei Guo, Shengyu Hu, Haiyan Zhang, Yuqian Wang, Lijuan Dong, Yong Sun, Yunhui Li, Haitao Jiang, Yaping Yang, Hong Chen. Wireless Power Transfer and Sensing Based on Non-Hermitian Topological Effects[J]. Acta Optica Sinica, 2023, 43(16): 1623011

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Optical Devices

    Received: Apr. 20, 2023

    Accepted: May. 22, 2023

    Published Online: Aug. 1, 2023

    The Author Email: Guo Zhiwei (2014guozhiwei@tongji.edu.cn), Chen Hong (hongchen@tongji.edu.cn)

    DOI:10.3788/AOS230850

    Topics