Chinese Optics, Volume. 13, Issue 2, 333(2020)
Analysis of thermal drift in high performance interferometric fiber-optic gyroscopes
[1] [1] HERVRE C L. The Fiber-Optic Gyroscope[M]. 2nd ed. Boston: Artech House, 2014.
[2] [2] PATUREL Y, HONTHAAS J, LEFVRE H, et al.. One nautical mile per month FOG-based strapdown inertial navigation system: a dream already within reach?[J]. Gyroscopy and Navigation, 2014, 5(1): 1-8.
[3] [3] VALI V, SHORTHILL R W. Fiber ring interferometer[J]. Applied Optics, 1976, 15(5): 1099-1100.
[4] [4] SHUPE D M. Thermally induced nonreciprocity in the fiber-optic interferometer[J]. Applied Optics, 1980, 19(5): 654-655.
[5] [5] FRIGO N J. Compensation of linear sources of non-reciprocity in Sagnac interferometers[J]. Proceedings of SPIE, 1983, 412: 268-271.
[6] [6] LEFVRE H C. The fiber-optic gyroscope: challenges to become the ultimate rotation-sensing technology[J]. Optical Fiber Technology, 2013, 19(6): 828-832.
[7] [7] KHAN J A, GUDMUNDSDOTTIR L, ALAM M. Fiber optic gyroscope coils: performance characterization[J]. Proceedings of SPIE, 2017, 10208: 1020807.
[8] [8] MINAKUCHI S, SANADA T, TAKEDA N, et al.. Thermal strain in lightweight composite fiber-optic gyroscope for space application[J]. Journal of Lightwave Technology, 2015, 33(12): 2658-2662.
[9] [9] CHAMOUN J N, DIGONNET M J F. Noise and bias error due to polarization coupling in a fiber optic gyroscope[J]. Journal of Lightwave Technology, 2015, 33(13): 2839-2847.
[10] [10] MOHR F, SCHADT F. Bias error in fiber optic gyroscopes due to elasto-optic interactions in the sensor fiber[J]. Proceedings of SPIE, 2004, 5502: 410-413.
[11] [11] MOHR F, SCHADT F. Rigorous treatment of fiber-environmental interactions in fiber gyroscopes[C]. Proceedings of 2008 IEEE Region 8 International Conference on Computational Technologies in Electrical and Electronics Engineering, IEEE, 2008: 372-375.
[12] [12] MOHR F, SCHADT F. Error signal formation in FOGs through thermal and elastooptical environmental influences on the sensing coil[C]. International Sensors and Systems Symposium, Karlsruhe, 2011.
[13] [13] OGUT S, OSUNLUK B, OZBAY E. Modeling of thermal sensitivity of a fiber optic gyroscope coil with practical quadrupole winding[C]. Proceedings of SPIE, 2017, 10208: 1020806.
[14] [14] TATEDA M, TANAKA S, SUGAWARA Y. Thermal characteristics of phase shift in jacketed optical fibers[J]. Applied Optics, 1980, 19(5): 770-773
[15] [15] LAGAKOS N, BUCARO J A, JARZYNSKI J. Temperature-induced optical phase shifts in fibers[J]. Applied Optics, 1981, 20(13): 2305-2308.
[16] [16] MUSHA T, KAMIMURA J I, NAKAZAWA M. Optical phase fluctuations thermally induced in a single-mode optical fiber[J]. Applied Optics, 1982, 21(4): 694-698.
[17] [17] WONG D. Thermal stability of intrinsic stress birefringence in optical fibers[J]. Journal of Lightwave Technology, 1990, 8(11): 1757-1761.
[18] [18] CHIANG K S. Temperature sensitivity of coated stress-induced birefringence optical fibers[J]. Optical Engineering, 1997, 36(4): 999-1007.
[19] [19] MCDEARMON G F. Theoretical analysis of the minimization of the temperature sensitivity of a coated optical fiber in a fiber-optic polarimeter[J]. Journal of Lightwave Technology, 1990, 8(1): 51-55.
[20] [20] MOHR F, KIESEL P. Thermal sensitivity of sensing coils for fibre gyroscopes[J]. Proceedings of SPIE, 1984, 514: 305-308.
[21] [21] MOHR F. Thermooptically induced bias drift in fiber optical Sagnac interferometers[J]. Journal of Lightwave Technology, 1996, 14(1): 27-41.
Get Citation
Copy Citation Text
LIU Jun-hao, LI Rui-chen. Analysis of thermal drift in high performance interferometric fiber-optic gyroscopes[J]. Chinese Optics, 2020, 13(2): 333
Category:
Received: May. 17, 2019
Accepted: --
Published Online: May. 21, 2020
The Author Email: LIU Jun-hao (deishi5204@163.com)