Laser & Optoelectronics Progress, Volume. 62, Issue 4, 0428005(2025)

Branch Alignment Learning for Oriented Object Detection in Remote Sensing Images

Hailong Zhang1、*, Qiaolin Zeng1, Jie Yang2, Bowei Wang2, and Chengfang Wang1
Author Affiliations
  • 1College of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
  • 2Sichuan Meteorological Disaster Prevention Technology Center, Sichuan Meteorological Bureau, Chengdu 610072, Sichuan , China
  • show less
    Figures & Tables(14)
    Overall framework of proposed algorithm. (a) FPN backbone; (b) BAM
    Structure of hierarchical attention
    Branch alignment sampling
    Visualization of model prediction results
    Visualization of baseline(top) and BFA-Net(bottom)
    • Table 1. Branch alignment assignment based on sorting strategy

      View table

      Table 1. Branch alignment assignment based on sorting strategy

      Algorithm 1 Branch alignment assignment based on sorting strategy

      Input:

      Ais a set of all anchor boxes, GGT is a set of ground-truth boxes,is a set of classification predictions, Preg is a set of regression predictions

      Output:

      Sp is a set of positive samples, Sn is a set of negative samples

      1: for each gGGT do

      2: Sc ← compute IoU between g and aA, and select top Q anchors with the highest IoU as candidate samples Sc

      3: Pcls, cPreg, c← select the classification and regression predictions corresponding to the candidate sample Sc

      4: for each pregPreg, c do

      5: I=IoUpreg,g ← compute IoU between g and preg

      6: end for

      7: Create an empty set to save alignment degree: AAD

      8: for each sc Sc do

      9: ad=calculate_AADsc,g ← compute the AAD between sc and g

      10: AAD=AADaad

      11: end for

      12: Sali=Ttop,vAAD ← select top V candidate samples as alignment samples Sali

      13: xg,xa ← transform g and Sali to the Gaussian distribution xg,xa

      14: Sp ← compute the Gaussian similarity between xg and xa, and define samples higher than the threshold as positive samples Sp

      15: end for

      16: Sn=A-Sp

      17: return Sn,Sp

    • Table 2. Compare mAP value of current mainstream one-stage, two-stage and anchor-free algorithms on DOTA-V1.0

      View table

      Table 2. Compare mAP value of current mainstream one-stage, two-stage and anchor-free algorithms on DOTA-V1.0

      MethodPLBDBRGTFSVLVSHTCBCSTSBFRAHASPHCmAP
      PSC1788.2773.244.5562.2977.7977.387.0490.8878.4772.0152.6961.1466.3669.6858.170.65
      SCRDet1889.9880.6552.0968.3668.3660.3272.4190.8587.9486.8665.0266.6866.2568.2465.2172.61
      SASM1987.5180.1551.0770.3574.9575.884.2390.9080.8784.9358.5165.5969.7470.1842.3172.47
      KFIoU2089.2076.451.6470.1578.3176.4387.190.8881.6882.2264.6564.8466.7770.6849.5273.37
      ARS-DETR2186.6177.2648.8466.7678.3878.9687.490.6182.7682.1954.7262.6172.6472.8064.2673.79
      ReDet2288.9478.0751.1972.7674.2678.0887.4490.8480.7978.5960.8564.2276.8472.7954.8574.03
      RoI Trans2389.0177.4851.6472.0774.4377.5587.7690.8179.7185.2758.3664.1176.571.9954.0674.05
      S2Anet389.1182.8448.3771.1178.1178.3987.2590.8384.985.6460.3662.665.2669.1357.9474.12
      Baseline88.6777.6241.8158.1774.5871.6479.1190.2982.1374.3254.7560.662.5769.6760.6468.43
      Proposed88.8683.451.5172.5179.9676.986.8890.9184.8785.2560.6466.1666.9471.3764.3275.36
    • Table 3. Compare the mAP value of current mainstream algorithms on DOTA-V1.5

      View table

      Table 3. Compare the mAP value of current mainstream algorithms on DOTA-V1.5

      MethodPLBDBRGTFSVLVSHTCBCSTSBFRAHASPHCCCmAP
      R3Det271.9974.6148.461.4945.8964.9676.5990.8271.668.748.3566.4768.3165.9560.1516.2762.54
      DAL980.8080.9946.4364.2549.5268.0270.9290.7374.2872.4948.4467.660.4965.7749.8624.0464.19
      Mask R-CNN78.3677.4153.3656.9452.1763.679.7490.3181.9166.4145.4971.3270.7773.8761.4917.1164.54
      HTC78.4174.4153.4163.1752.4563.5679.8990.3475.1767.6453.1669.9472.1374.0256.4212.1464.47
      ReDet2379.5182.6353.8169.8252.7675.6487.8290.8375.8168.7849.1171.6575.5775.1758.2915.3667.66
      Baseline71.6677.2248.7165.1649.4869.6479.2190.8477.2161.0347.368.6967.2274.4846.165.7862.49
      Proposed79.9782.7453.2367.8253.1676.7286.5890.9277.8270.7147.2969.9271.5974.6862.7526.3668.26
    • Table 4. Accuracy comparison between this study and other algorithms at DIOR-R

      View table

      Table 4. Accuracy comparison between this study and other algorithms at DIOR-R

      MethodBackboneImage size /(pixel×pixel)mAP /%
      KFIoU20R-50800×80057.8
      Gliding VertexR-50800×80060.1
      GWD15R-101800×80060.3
      RoI Trans22R-50512×80063.9
      CGCDetR-50800×80064.9
      BaselineR-50800×80057.6
      ProposedR-50800×80065.5
    • Table 5. Ablation study results of proposed each structure on DOTA-V1.0

      View table

      Table 5. Ablation study results of proposed each structure on DOTA-V1.0

      MethodStructuremAP /%
      BaselineNone68.43
      BFA-NetBAH71.06
      BFA-NetBAH+BAS72.13
      BFA-NetBAH+BAS+BASS75.36
    • Table 6. Ablation study results of BAF layers N on DOTA-V1.0

      View table

      Table 6. Ablation study results of BAF layers N on DOTA-V1.0

      NBAM+BASSParametersGFLOPsmAP /%
      Baseline36.51217.368.43
      1038.71209.2474.72
      837.24183.3775.36
      635.76157.774.83
      434.29131.9473.13
    • Table 7. Ablation study results of hyper-parameters in AD on DOTA-V1.0

      View table

      Table 7. Ablation study results of hyper-parameters in AD on DOTA-V1.0

      βαmAP /%βαmAP /%βαmAP /%βαmAP /%
      1/40.374.751/30.374.681/20.374.6810.374.89
      0.575.050.575.190.575.190.575.36
      0.774.780.775.120.775.120.775.18
      0.974.670.975.080.975.080.975.09
    • Table 8. Ablation study results of Gaussian similarity threshold on DOTA-V1.0

      View table

      Table 8. Ablation study results of Gaussian similarity threshold on DOTA-V1.0

      γ0.30.40.50.6
      mAP /%74.5175.3675.0274.79
    • Table 9. Portability analysis of BAM on DOTA-V1.0

      View table

      Table 9. Portability analysis of BAM on DOTA-V1.0

      MethodBAMHead/full parameters /MbitHead /full flops /GbitmAP /%
      ATSS-O4.76/36.05104.07/207.8772.29
      4.83/37.2979.67/183.4774.13(1.84)
      FCOS-O4.77/31.92104.92/206.9172.76
      4.83/33.1679.67/182.4173.36(0.60)
      S2ANet5.47/38.61119.57/197.6274.12
      4.97/38.5198.72/179.5874.75(0.63)
    Tools

    Get Citation

    Copy Citation Text

    Hailong Zhang, Qiaolin Zeng, Jie Yang, Bowei Wang, Chengfang Wang. Branch Alignment Learning for Oriented Object Detection in Remote Sensing Images[J]. Laser & Optoelectronics Progress, 2025, 62(4): 0428005

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Remote Sensing and Sensors

    Received: Jun. 19, 2024

    Accepted: Jul. 19, 2024

    Published Online: Mar. 4, 2025

    The Author Email:

    DOI:10.3788/LOP241506

    CSTR:32186.14.LOP241506

    Topics