Photonics Research, Volume. 10, Issue 1, 183(2022)
Frequency upconversion detection of rotational Doppler effect
[1] C. Doppler. Über das farbige Licht der Doppelsterne und einigeranderer Gestirne des Himmels(1842).
[2] M. Padgett. Electromagnetism: like a speeding watch. Nature, 443, 924-925(2006).
[3] B. A. Garetz, S. Arnold. Variable frequency shifting of circularly polarized laser radiation via a rotating half-wave retardation plate. Opt. Commun., 31, 1-3(1979).
[4] J. Courtial, K. Dholakia, D. A. Robertson, L. Allen, M. J. Padgett. Measurement of the rotational frequency shift imparted to a rotating light beam possessing orbital angular momentum. Phys. Rev. Lett., 80, 3217-3219(1998).
[5] J. Courtial, D. A. Robertson, K. Dholakia, L. Allen, M. J. Padgett. Rotational frequency shift of a light beam. Phys. Rev. Lett., 81, 4828-4830(1998).
[6] M. P. Lavery, F. C. Speirits, S. M. Barnett, M. J. Padgett. Detection of a spinning object using light’s orbital angular momentum. Science, 341, 537-540(2013).
[7] L. Marrucci. Spinning the Doppler effect. Science, 341, 464-465(2013).
[8] S. Barreiro, J. W. R. Tabosa, H. Failache, A. Lezama. Spectroscopic observation of the rotational Doppler effect. Phys. Rev. Lett., 97, 113601(2006).
[9] H. Luo, S. Wen, W. Shu, Z. Tang, Y. Zou, D. Fan. Rotational Doppler effect in left-handed materials. Phys. Rev. A, 78, 033805(2008).
[10] O. Korech, U. Steinitz, R. J. Gordon, I. S. Averbukh, Y. Prior. Observing molecular spinning via the rotational Doppler effect. Nat. Photonics, 7, 711-714(2013).
[11] H. Zhou, D. Fu, J. Dong, P. Zhang, X. Zhang. Theoretical analysis and experimental verification on optical rotational Doppler effect. Opt. Express, 24, 10050-10056(2016).
[12] H. L. Zhou, D. Z. Fu, J. J. Dong, P. Zhang, D. X. Chen, X. L. Cai, F. L. Li, X. L. Zhang. Orbital angular momentum complex spectrum analyzer for vortex light based on the rotational Doppler effect. Light Sci. Appl., 6, e16251(2017).
[13] W. Zhang, J. Gao, D. Zhang, Y. He, T. Xu, R. Fickler, L. Chen. Free-space remote sensing of rotation at the photon-counting level. Phys. Rev. Appl., 10, 044014(2018).
[14] Y. Zhai, S. Fu, C. Yin, H. Zhou, C. Gao. Detection of angular acceleration based on optical rotational Doppler effect. Opt. Express, 27, 15518-15527(2019).
[15] S. Qiu, T. Liu, Z. Li, C. Wang, Y. Ren, Q. Shao, C. Xing. Influence of lateral misalignment on the optical rotational Doppler effect. Appl. Opt., 58, 2650-2655(2019).
[16] S. Qiu, T. Liu, Y. Ren, Z. Li, C. Wang, Q. Shao. Detection of spinning objects at oblique light incidence using the optical rotational Doppler effect. Opt. Express, 27, 24781-24792(2019).
[17] W. Zhang, D. Zhang, X. Qiu, L. Chen. Quantum remote sensing of the angular rotation of structured objects. Phys. Rev. A, 100, 043832(2019).
[18] R. D. Hudson, J. W. Hudson. The military applications of remote sensing by infrared. Proc. IEEE, 63, 104-128(1975).
[19] A. Barth. Infrared spectroscopy of proteins. BBA-Bioenergetics, 1767, 1073-1101(2007).
[20] S. Türker-Kaya, C. W. Huck. A review of mid-infrared and near-infrared imaging: principles, concepts and applications in plant tissue analysis. Molecules, 22, 168(2017).
[21] J. Shi, T. T. Wong, Y. He, L. Li, R. Zhang, C. S. Yung, J. Hwang, K. Maslov, L. V. Wang. High-resolution, high-contrast mid-infrared imaging of fresh biological samples with ultraviolet-localized photoacoustic microscopy. Nat. Photonics, 13, 609-615(2019).
[22] Q. Weng. Thermal infrared remote sensing for urban climate and environmental studies: methods, applications, and trends. ISPRS J. Photogramm., 64, 335-344(2009).
[23] M. Wang. Remote sensing of the ocean contributions from ultraviolet to near-infrared using the shortwave infrared bands: simulations. Appl. Opt., 46, 1535-1547(2007).
[24] M. Wang, W. Shi. Estimation of ocean contribution at the MODIS near-infrared wavelengths along the east coast of the US: two case studies. Geophys. Res. Lett., 32, L17708(2005).
[25] M. Mrejen, Y. Erlich, A. Levanon, H. Suchowski. Multicolor time-resolved upconversion imaging by adiabatic sum frequency conversion. Laser Photon. Rev., 14, 2000040(2020).
[26] K. J. Kubarych, M. Joffre, A. Moore, N. Belabas, D. M. Jonas. Mid-infrared electric field characterization using a visible charge-coupled-device-based spectrometer. Opt. Lett., 30, 1228-1230(2005).
[27] M. Vollmer, K.-P. Möllmann. Infrared Thermal Imaging: Fundamentals, Research and Applications(2010).
[28] B. Klein, E. Plis, M. N. Kutty, N. Gautam, A. Albrecht, S. Myers, S. Krishna. Varshni parameters for InAs/GaSb strained layer superlattice infrared photodetectors. J. Phys. D, 44, 075102(2011).
[29] R. H. Hadfield. Single-photon detectors for optical quantum information applications. Nat. Photonics, 3, 696-705(2009).
[30] H. Dong, H. Pan, Y. Li, E. Wu, H. Zeng. Efficient single-photon frequency upconversion at 1.06 μm with ultralow background counts. Appl. Phys. Lett., 93, 071101(2008).
[31] R. T. Thew, H. Zbinden, N. Gisin. Tunable upconversion photon detector. Appl. Phys. Lett., 93, 071104(2008).
[32] C. Pedersen, E. Karamehmedović, J. S. Dam, P. Tidemand-Lichtenberg. Enhanced 2D-image upconversion using solid-state lasers. Opt. Express, 17, 20885-20890(2009).
[33] K. Huang, X. Gu, H. Pan, E. Wu, H. Zeng. Few-photon-level two-dimensional infrared imaging by coincidence frequency upconversion. Appl. Phys. Lett., 100, 151102(2012).
[34] K. F. Li, J. H. Deng, X. Liu, G. Li. Observation of rotational Doppler effect in second harmonic generation in reflection mode. Laser Photon. Rev., 12, 1700204(2018).
[35] G. Li, T. Zentgraf, S. Zhang. Rotational Doppler effect in nonlinear optics. Nat. Phys., 12, 736-740(2016).
[36] L. Torner, J. P. Torres, S. Carrasco. Digital spiral imaging. Opt. Express, 13, 873-881(2005).
[37] R. W. Boyd, B. R. Masters. Nonlinear Optics(2008).
[38] F. Bouchard, N. H. Valencia, F. Brandt, R. Fickler, M. Huber, M. Malik. Measuring azimuthal and radial modes of photons. Opt. Express, 26, 31925-31941(2018).
[39] R. Tang, X. Li, W. Wu, H. Pan, H. Zeng, E. Wu. High efficiency frequency upconversion of photons carrying orbital angular momentum for a quantum information interface. Opt. Express, 23, 9796-9802(2015).
Get Citation
Copy Citation Text
Haoxu Guo, Xiaodong Qiu, Song Qiu, Ling Hong, Fei Lin, Yuan Ren, Lixiang Chen, "Frequency upconversion detection of rotational Doppler effect," Photonics Res. 10, 183 (2022)
Category: Nonlinear Optics
Received: Aug. 31, 2021
Accepted: Nov. 16, 2021
Published Online: Dec. 20, 2021
The Author Email: Xiaodong Qiu (qxd@xmu.edu.cn), Yuan Ren (renyuan_823@aliyun.com), Lixiang Chen (chenlx@xmu.edu.cn)