Laser & Optoelectronics Progress, Volume. 57, Issue 6, 061015(2020)

Image Dehazing Algorithm Based on Multi-Scale Fusion and Adversarial Training

Yuhang Liu* and Shuai Wu**
Author Affiliations
  • School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China
  • show less
    Figures & Tables(10)
    Architecture of the generative network
    Illustration of the multi-scale feature extraction block
    Illustration of the residual-and-densely-connected block
    Architecture of the discriminative network
    Dehazing results of the synthetic hazy images. (a) Hazy image; (b) DCP; (c) FVR; (d) BCCR; (e) GRM; (f) CAP; (g) NLD; (h) DehazeNet; (i) MSCNN; (j) AOD-Net; (k) proposed method; (l) haze-free image
    Dehazing results of the real-world hazy images. (a) Hazy image; (b) DCP; (c) FVR; (d) BCCR; (e) GRM; (f) CAP; (g) NLD; (h) DehazeNet; (i) MSCNN; (j) AOD-Net; (k) proposed method
    • Table 1. Comparison of full-reference quality metrics tested on synthetic hazy images

      View table

      Table 1. Comparison of full-reference quality metrics tested on synthetic hazy images

      Quality metricDCPFVRBCCRGRMCAPNLDDehazeNetMSCNNAOD-NetProposed
      PSNR/dB16.6215.7216.8818.8619.0517.2921.1417.5719.0625.08
      SSIM0.81790.74830.79130.85530.83640.74890.84720.81020.85040.9468
    • Table 2. Comparison of no-reference quality metrics tested on synthetic hazy images

      View table

      Table 2. Comparison of no-reference quality metrics tested on synthetic hazy images

      Quality metricDCPFVRBCCRGRMCAPNLDDehazeNetMSCNNAOD-NetProposed
      SSEQ64.9467.7565.8363.3064.6967.4665.4665.3167.6568.07
      BLIINDS-II74.4175.6374.4573.4673.4174.8571.7174.3479.0281.96
    • Table 3. Comparison of full-reference quality metrics tested on synthetic hazy images with different haze concentration levels

      View table

      Table 3. Comparison of full-reference quality metrics tested on synthetic hazy images with different haze concentration levels

      HazedensityQualitymetricDCPFVRBCCRGRMCAPNLDDehaze-NetMSCNNAOD-NetOurproposed
      Light hazeβ∈[0.6,0.9]PSNR /dB16.1017.1816.9118.6420.8817.5224.2419.7222.4026.11
      SSIM0.81580.76820.79780.85280.85970.75580.90440.84890.89800.9579
      Medium hazeβ∈[1.0,1.4]PSNR /dB16.5816.0017.0718.7419.6817.3722.0217.2519.6124.95
      SSIM0.82100.75380.79420.85760.84500.74870.88700.81100.86160.9472
      Heavy hazeβ∈[1.5,1.8]PSNR /dB17.1514.4217.1419.1117.2117.0618.6715.1016.1624.40
      SSIM0.82590.72890.79060.85550.81200.74380.84540.77230.80640.9381
    • Table 4. Comparison of no-reference quality metrics tested on real-world hazy images

      View table

      Table 4. Comparison of no-reference quality metrics tested on real-world hazy images

      Quality metricDCPFVRBCCRGRMCAPNLDDehazeNetMSCNNAOD-NetProposed
      SSEQ68.6567.7566.6370.1967.6767.9668.3468.4470.0569.99
      BLIINDS-II69.3572.1068.5579.6063.5570.8060.3562.6574.7582.25
    Tools

    Get Citation

    Copy Citation Text

    Yuhang Liu, Shuai Wu. Image Dehazing Algorithm Based on Multi-Scale Fusion and Adversarial Training[J]. Laser & Optoelectronics Progress, 2020, 57(6): 061015

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Jul. 30, 2019

    Accepted: Sep. 2, 2019

    Published Online: Mar. 6, 2020

    The Author Email: Yuhang Liu (lyhang95@163.com), Shuai Wu (iswus@outlook.com)

    DOI:10.3788/LOP57.061015

    Topics