Semiconductor Optoelectronics, Volume. 46, Issue 3, 557(2025)

Hyperspectral Unmixing Based on Dynamic Multilevel Feature Extraction

CHEN Liyuan and YANG Huadong
Author Affiliations
  • School of Information Science and Engineering, Shenyang Ligong University, Shenyang 110159, CHN
  • show less
    References(21)

    [6] [6] Nie J, Wu K, Li Y, et al. Advances in hyperspectral remote sensing for precision fertilization decision-making: a comprehensive overview[J]. Turkish Journal of Agriculture and Forestry, 2024, 48(6): 1084-1104.

    [8] [8] Zhang W, Li X, Dou Y, et al. A geometry-based band selection approach for hyperspectral image analysis[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(8): 4318-4333.

    [9] [9] Bioucas-Dias J M, Plaza A, Dobigeon N, et al. Hyperspectral unmixing overview: geometrical, statistical, and sparse regression-based approaches[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2012, 5(2): 354-379.

    [10] [10] Huang J, Di W C, Wang J J, et al. Bilateral joint-sparse regression for hyperspectral unmixing[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 10147-10161.

    [11] [11] Hong D, He W, Yokoya N, et al. Interpretable Hyperspectral Artificial Intelligence: when nonconvex modeling meets hyperspectral remote sensing[J]. IEEE Geoscience and Remote Sensing Magazine, 2021, 9(2): 52-87.

    [12] [12] Bejani M M, Ghatee M. A systematic review on overfitting control in shallow and deep neural networks[J]. Artificial Intelligence Review, 2021, 54(8): 6391-6438.

    [13] [13] Wan L, Chen T, Plaza A, et al. Hyperspectral unmixing based on spectral and sparse deep convolutional neural networks[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 11669-11682.

    [14] [14] Lei M, Li J, Qi L, et al. Hyperspectral unmixingviarecurrent neural network with chain classifier[C]//2020 IEEE International Geoscience and Remote Sensing Symposium, 2020: 2173-2176.

    [15] [15] Jin Q, Ma Y, Fan F, et al. Adversarial autoencoder network for hyperspectral unmixing[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(8): 4555-4569.

    [16] [16] Deng K, Qian Y, Nie J, et al. Diffusion-model-based hyperspectral unmixing using spectral prior distribution[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5519716.

    [17] [17] Chen J, Yang C, Zhang L, et al. TCCU-Net: transformer and CNN collaborative unmixing network for hyperspectral image[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17: 8073-8089.

    [18] [18] Gao W, Yang J, Zhang Y, et al. SSAF-net: a spatial-spectral adaptive fusion network for hyperspectral unmixing with endmember variability[J]. IEEE Transactions on Geoscience and Remote Sensing, 2025, 63: 5506015.

    [19] [19] Dosovitskiy A. An image is worth 16×16 words: Transformers for image recognition at scale[J]. arXiv preprint arXiv: 2010.11929, 2020.

    [20] [20] Chen Z, Zhu Y, Zhao C, et al. DPT: deformable patch-based transformer for visual recognition[C]//Proceedings of the 29th ACM International Conference on Multimedia, 2021: 2899-2907.

    [21] [21] Zhu F, Wang Y, Fan B, et al. Spectral unmixingviadata-guided sparsity[J]. IEEE Transactions on Image Processing, 2014, 23(12): 5412-5427.

    [22] [22] Schaepman M E, Jehle M, Hueni A, et al. Advanced radiometry measurements and Earth science applications with the Airborne Prism Experiment (APEX)[J]. Remote Sensing of Environment, 2015, 158: 207-219.

    [23] [23] Zhang S, Li J, Liu K, et al. Hyperspectral unmixing based on local collaborative sparse regression[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(5): 631-635.

    [24] [24] Karami A, Heylen R, Scheunders P. Denoising of hyperspectral images using shearlet transform and fully constrained least squares unmixing[C]//2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), 2016: 1-5.

    [25] [25] Feng X R, Li H C, Wang R, et al. Hyperspectral unmixing based on nonnegative matrix factorization: a comprehensive review[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 4414-4436.

    [26] [26] Gao L, Han Z, Hong D, et al. CyCU-Net: cycle-consistency unmixing network by learning cascaded autoencoders[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 5503914.

    [27] [27] Ghosh P, Roy S K, Koirala B, et al. Hyperspectral unmixing using transformer network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5535116.

    Tools

    Get Citation

    Copy Citation Text

    CHEN Liyuan, YANG Huadong. Hyperspectral Unmixing Based on Dynamic Multilevel Feature Extraction[J]. Semiconductor Optoelectronics, 2025, 46(3): 557

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Feb. 20, 2025

    Accepted: Sep. 18, 2025

    Published Online: Sep. 18, 2025

    The Author Email:

    DOI:10.16818/j.issn1001-5868.20250220001

    Topics