Laser & Optoelectronics Progress, Volume. 61, Issue 1, 0126001(2024)

Generations of Structured Light (Invited)

Yan Zhang†、* and Tong Nan1、†
Author Affiliations
  • Beijing Key Laboratory of Metamaterials and Devices, Department of Physics, Capital Normal University, Beijing 100048, China
  • show less
    References(148)

    [1] Young T. I. The Bakerian Lecture. Experiments and calculations relative to physical optics[J]. Philosophical Transactions of the Royal Society of London, 94, 1-16(1804).

    [2] Lu R W, Tanimoto M, Koyama M et al. 50 Hz volumetric functional imaging with continuously adjustable depth of focus[J]. Biomedical Optics Express, 9, 1964-1976(2018).

    [3] Wang J, Yang J Y, Fazal I M et al. Terabit free-space data transmission employing orbital angular momentum multiplexing[J]. Nature Photonics, 6, 488-496(2012).

    [4] Zhan Q W, Leger J R. Microellipsometer with radial symmetry[J]. Applied Optics, 41, 4630-4637(2002).

    [5] Bozinovic N, Yue Y, Ren Y X et al. Terabit-scale orbital angular momentum mode division multiplexing in fibers[J]. Science, 340, 1545-1548(2013).

    [6] Padgett M, Bowman R. Tweezers with a twist[J]. Nature Photonics, 5, 343-348(2011).

    [7] He H, Friese M E, Heckenberg N R et al. Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity[J]. Physical Review Letters, 75, 826-829(1995).

    [8] Leach J, Jack B, Romero J et al. Quantum correlations in optical angle–orbital angular momentum variables[J]. Science, 329, 662-665(2010).

    [9] Zhang Y W, Agnew M, Roger T et al. Simultaneous entanglement swapping of multiple orbital angular momentum states of light[J]. Nature Communications, 8, 632(2017).

    [10] Kozawa Y, Matsunaga D, Sato S. Superresolution imaging via superoscillation focusing of a radially polarized beam[J]. Optica, 5, 86-92(2018).

    [11] Yoshida M, Kozawa Y, Sato S. Subtraction imaging by the combination of higher-order vector beams for enhanced spatial resolution[J]. Optics Letters, 44, 883-886(2019).

    [12] Durnin J, Miceli J J, Eberly J H. Diffraction-free beams[J]. Physical Review Letters, 58, 1499-1501(1987).

    [13] Durnin J. Exact solutions for nondiffracting beams. I. The scalar theory[J]. Journal of the Optical Society of America A, 4, 651-654(1987).

    [14] Broky J, Siviloglou G A, Dogariu A et al. Self-healing properties of optical Airy beams[J]. Optics Express, 16, 12880-12891(2008).

    [15] Siviloglou G A, Christodoulides D N. Accelerating finite energy Airy beams[J]. Optics Letters, 32, 979-981(2007).

    [16] Siviloglou G A, Broky J, Dogariu A et al. Observation of accelerating Airy beams[J]. Physical Review Letters, 99, 213901(2007).

    [17] Gutiérrez-Vega J C, Iturbe-Castillo M D, Chávez-Cerda S. Alternative formulation for invariant optical fields: Mathieu beams[J]. Optics Letters, 25, 1493-1495(2000).

    [18] Alpmann C, Bowman R, Woerdemann M et al. Mathieu beams as versatile light moulds for 3D micro particle assemblies[J]. Optics Express, 18, 26084-26091(2010).

    [19] Bandres M A, Gutiérrez-Vega J C, Chávez-Cerda S. Parabolic nondiffracting optical wave fields[J]. Optics Letters, 29, 44-46(2004).

    [20] López-Mariscal C, Bandres M A, Gutiérrez-Vega J C et al. Observation of parabolic nondiffracting optical fields[J]. Optics Express, 13, 2364-2369(2005).

    [21] Xie Z W, Wang X K, Ye J S et al. Spatial terahertz modulator[J]. Scientific Reports, 3, 3347(2013).

    [22] Wang G C, Zhou T, Huang J Z et al. Moiré meta-device for flexibly controlled Bessel beam generation[J]. Photonics Research, 11, 100-108(2022).

    [23] Liu S, Noor A, Du L L et al. Anomalous refraction and nondiffractive Bessel-beam generation of terahertz waves through transmission-type coding metasurfaces[J]. ACS Photonics, 3, 1968-1977(2016).

    [24] Chen W T, Khorasaninejad M, Zhu A Y et al. Generation of wavelength-independent subwavelength Bessel beams using metasurfaces[J]. Light: Science & Applications, 6, e16259(2017).

    [25] Rosen J, Yariv A. Snake beam: a paraxial arbitrary focal line[J]. Optics Letters, 20, 2042-2044(1995).

    [26] Zamboni-Rached M. Stationary optical wave fields with arbitrary longitudinal shape by superposing equal frequency Bessel beams: frozen waves[J]. Optics Express, 12, 4001-4006(2004).

    [27] Fan X H, Li P, Guo X Y et al. Axially tailored light field by means of a dielectric metalens[J]. Physical Review Applied, 14, 024035(2020).

    [28] Berry M V, Balazs N L. Nonspreading wave packets[J]. American Journal of Physics, 47, 264-267(1979).

    [29] Jarutis V, Matijošius A, Di Trapani P et al. Spiraling zero-order Bessel beam[J]. Optics Letters, 34, 2129-2131(2009).

    [30] Matijošius A, Jarutis V, Piskarskas A. Generation and control of the spiraling zero-order Bessel beam[J]. Optics Express, 18, 8767-8771(2010).

    [31] Chremmos I D, Chen Z G, Christodoulides D N et al. Bessel-like optical beams with arbitrary trajectories[J]. Optics Letters, 37, 5003-5005(2012).

    [32] Zhao J, Zhang P, Deng D et al. Observation of self-accelerating Bessel-like optical beams along arbitrary trajectories[J]. Optics Letters, 38, 498-500(2013).

    [33] Zhao J Y, Chremmos I D, Zhang Z et al. Specially shaped Bessel-like self-accelerating beams along predesigned trajectories[J]. Science Bulletin, 60, 1157-1169(2015).

    [34] Wen Y H, Chen Y J, Zhang Y F et al. Winding light beams along elliptical helical trajectories[J]. Physical Review A, 94, 013829(2016).

    [35] He J W, Wang S, Xie Z W et al. Abruptly autofocusing terahertz waves with meta-hologram[J]. Optics Letters, 41, 2787-2790(2016).

    [36] Wen J, Chen L, Yu B B et al. All-dielectric synthetic-phase metasurfaces generating practical airy beams[J]. ACS Nano, 15, 1030-1038(2021).

    [37] Wen J, Chen L, Chen X et al. Use of dielectric metasurfaces to generate deep-subwavelength nondiffractive Bessel-like beams with arbitrary trajectories and ultralarge deflection[J]. Laser & Photonics Reviews, 15, 2000487(2021).

    [38] Siegman A E[M]. Lasers(1986).

    [39] Bandres M A, Gutiérrez-Vega J C. Ince–gaussian beams[J]. Optics Letters, 29, 144-146(2004).

    [40] Gather M C, Yun S H. Single-cell biological lasers[J]. Nature Photonics, 5, 406-410(2011).

    [41] Reicherter M, Haist T, Wagemann E U et al. Optical particle trapping with computer-generated holograms written on a liquid-crystal display[J]. Optics Letters, 24, 608-610(1999).

    [42] Rodrigo J A, Caravaca-Aguirre A M, Alieva T et al. Microparticle movements in optical funnels and pods[J]. Optics Express, 19, 5232-5243(2011).

    [43] MacDonald M P, Paterson L, Volke-Sepulveda K et al. Creation and manipulation of three-dimensional optically trapped structures[J]. Science, 296, 1101-1103(2002).

    [44] Ren Y X, Fang Z X, Gong L et al. Digital generation and control of Hermite-Gaussian modes with an amplitude digital micromirror device[J]. Journal of Optics, 17, 125604(2015).

    [45] Ren Y X, Fang Z X, Gong L et al. Dynamic generation of Ince-Gaussian modes with a digital micromirror device[J]. Journal of Applied Physics, 117, 133106(2015).

    [46] Marrucci L, Manzo C, Paparo D. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media[J]. Physical Review Letters, 96, 163905(2006).

    [47] Ji W, Lee C H, Chen P et al. Meta-q-plate for complex beam shaping[J]. Scientific Reports, 6, 25528(2016).

    [48] Ohtake Y, Ando T, Fukuchi N et al. Universal generation of higher-order multiringed Laguerre-Gaussian beams by using a spatial light modulator[J]. Optics Letters, 32, 1411-1413(2007).

    [49] Ruffato G, Massari M, Romanato F. Generation of high-order Laguerre-Gaussian modes by means of spiral phase plates[J]. Optics Letters, 39, 5094-5097(2014).

    [50] Wang Y M, Fang X Y, Kuang Z Y et al. On-chip generation of broadband high-order Laguerre–Gaussian modes in a metasurface[J]. Optics Letters, 42, 2463-2466(2017).

    [51] Mao H D, Ren Y X, Yu Y E et al. Broadband meta-converters for multiple Laguerre-Gaussian modes[J]. Photonics Research, 9, 1689-1698(2021).

    [52] Chen L, Kanwal S, Lu Y Z et al. Broadband generation of accelerating polygon beams with large curvature ratio and small focused spot using all-dielectric metasurfaces[J]. Nanophotonics, 11, 1203-1210(2022).

    [53] Lan Y P, Hu J T, Sun Z et al. Manipulation of non-diffracting beams with arbitrary structures based on optical caustics[J]. Acta Optica Sinica, 43, 1326001(2023).

    [54] Coullet P, Gil L, Rocca F. Optical vortices[J]. Optics Communications, 73, 403-408(1989).

    [55] Allen L, Beijersbergen M W, Spreeuw R J C et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical Review A, 45, 8185-8189(1992).

    [56] Bai Y H, Lü H R, Fu X et al. Vortex beam: generation and detection of orbital angular momentum[J]. Chinese Optics Letters, 20, 012601(2022).

    [57] Beijersbergen M W, Allen L, van der Veen H E L O et al. Astigmatic laser mode converters and transfer of orbital angular momentum[J]. Optics Communications, 96, 123-132(1993).

    [58] Beijersbergen M W, Coerwinkel R P C, Kristensen M et al. Helical-wavefront laser beams produced with a spiral phaseplate[J]. Optics Communications, 112, 321-327(1994).

    [59] Lee W M, Yuan X C, Cheong W C. Optical vortex beam shaping by use of highly efficient irregular spiral phase plates for optical micromanipulation[J]. Optics Letters, 29, 1796-1798(2004).

    [60] Heckenberg N R, McDuff R, Smith C P et al. Generation of optical phase singularities by computer-generated holograms[J]. Optics Letters, 17, 221-223(1992).

    [61] Stoyanov L, Topuzoski S, Stefanov I et al. Far field diffraction of an optical vortex beam by a fork-shaped grating[J]. Optics Communications, 350, 301-308(2015).

    [62] Ge S J, Chen P, Shen Z X et al. Terahertz vortex beam generator based on a photopatterned large birefringence liquid crystal[J]. Optics Express, 25, 12349-12356(2017).

    [63] Gibson G, Courtial J, Padgett M J et al. Free-space information transfer using light beams carrying orbital angular momentum[J]. Optics Express, 12, 5448-5456(2004).

    [64] Chen Y, Fang Z X, Ren Y X et al. Generation and characterization of a perfect vortex beam with a large topological charge through a digital micromirror device[J]. Applied Optics, 54, 8030-8035(2015).

    [65] Xie C Q, Zhu X L, Shi L N et al. Spiral photon sieves apodized by digital prolate spheroidal window for the generation of hard-x-ray vortex[J]. Optics Letters, 35, 1765-1767(2010).

    [66] Yang Y J, Zhao Q, Liu L L et al. Manipulation of orbital-angular-momentum spectrum using pinhole plates[J]. Physical Review Applied, 12, 064007(2019).

    [67] Zhao H, Quan B G, Wang X K et al. Demonstration of orbital angular momentum multiplexing and demultiplexing based on a metasurface in the terahertz band[J]. ACS Photonics, 5, 1726-1732(2018).

    [68] Zhang Y C, Liu W W, Gao J et al. Generating focused 3D perfect vortex beams by plasmonic metasurfaces[J]. Advanced Optical Materials, 6, 1701228(2018).

    [69] Dharmavarapu R, Izumi K I, Katayama I et al. Dielectric cross-shaped-resonator-based metasurface for vortex beam generation at mid-IR and THz wavelengths[J]. Nanophotonics, 8, 1263-1270(2019).

    [70] Mehmood M Q, Mei S T, Hussain S et al. Visible-frequency metasurface for structuring and spatially multiplexing optical vortices[J]. Advanced Materials, 28, 2533-2539(2016).

    [71] Barnett S M, Allen L. Orbital angular momentum and nonparaxial light beams[J]. Optics Communications, 110, 670-678(1994).

    [72] Biener G, Niv A, Kleiner V et al. Formation of helical beams by use of Pancharatnam-Berry phase optical elements[J]. Optics Letters, 27, 1875-1877(2002).

    [73] Yu N F, Genevet P, Kats M A et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 334, 333-337(2011).

    [74] He J W, Wang X K, Hu D et al. Generation and evolution of the terahertz vortex beam[J]. Optics Express, 21, 20230-20239(2013).

    [75] Ostrovsky A S, Rickenstorff-Parrao C, Arrizón V. Generation of the “perfect” optical vortex using a liquid-crystal spatial light modulator[J]. Optics Letters, 38, 534-536(2013).

    [76] Fu S Y, Wang T L, Gao C Q. Perfect optical vortex array with controllable diffraction order and topological charge[J]. Journal of the Optical Society of America A, 33, 1836-1842(2016).

    [77] Liu Y C, Ke Y G, Zhou J X et al. Generation of perfect vortex and vector beams based on Pancharatnam-Berry phase elements[J]. Scientific Reports, 7, 44096(2017).

    [78] Leach J, Yao E, Padgett M J. Observation of the vortex structure of a non-integer vortex beam[J]. New Journal of Physics, 6, 71(2004).

    [79] Berry M V. Optical vortices evolving from helicoidal integer and fractional phase steps[J]. Journal of Optics A: Pure and Applied Optics, 6, 259-268(2004).

    [80] Yang Z S, Zhang X, Bai C L et al. Nondiffracting light beams carrying fractional orbital angular momentum[J]. Journal of the Optical Society of America A, 35, 452-461(2018).

    [81] Tao S H, Yuan X C, Lin J et al. Fractional optical vortex beam induced rotation of particles[J]. Optics Express, 13, 7726-7731(2005).

    [82] Götte J B, O’Holleran K, Preece D et al. Light beams with fractional orbital angular momentum and their vortex structure[J]. Optics Express, 16, 993-1006(2008).

    [83] O’Dwyer D P, Phelan C F, Rakovich Y P et al. Generation of continuously tunable fractional optical orbital angular momentum using internal conical diffraction[J]. Optics Express, 18, 16480-16485(2010).

    [84] Xu Z D, Gui C C, Li S H et al. Fractional orbital angular momentum (OAM) free-space optical communications with atmospheric turbulence assisted by MIMO equalization[C], JT3A.1(2014).

    [85] Sharma M K, Joseph J, Senthilkumaran P. Fractional vortex dipole phase filter[J]. Applied Physics B, 117, 325-332(2014).

    [86] Liu H Y, Wang Y, Wang J Q et al. Electromagnetic vortex enhanced imaging using fractional OAM beams[J]. IEEE Antennas and Wireless Propagation Letters, 20, 948-952(2021).

    [87] Yang Y J, Zhu X L, Zeng J et al. Anomalous Bessel vortex beam: modulating orbital angular momentum with propagation[J]. Nanophotonics, 7, 677-682(2018).

    [88] Zhang K, Yuan Y Y, Ding X M et al. Polarization-engineered noninterleaved metasurface for integer and fractional orbital angular momentum multiplexing[J]. Laser & Photonics Reviews, 15, 2000351(2021).

    [89] Li X Z, Ma H X, Yin C L et al. Controllable mode transformation in perfect optical vortices[J]. Optics Express, 26, 651-662(2018).

    [90] Yang Y J, Thirunavukkarasu G, Babiker M et al. Orbital-angular-momentum mode selection by rotationally symmetric superposition of chiral states with application to electron vortex beams[J]. Physical Review Letters, 119, 094802(2017).

    [91] Ming Y, Intaravanne Y, Ahmed H et al. Creating composite vortex beams with a single geometric metasurface[J]. Advanced Materials, 34, 2109714(2022).

    [92] Ahmed H, Intaravanne Y, Ming Y et al. Multichannel superposition of grafted perfect vortex beams[J]. Advanced Materials, 34, e2203044(2022).

    [93] Pohl D. Operation of a ruby laser in the purely transverse electric mode TE01[J]. Applied Physics Letters, 20, 266-267(1972).

    [94] Mushiake Y, Matsumura K, Nakajima N. Generation of radially polarized optical beam mode by laser oscillation[J]. Proceedings of the IEEE, 60, 1107-1109(1972).

    [95] Youngworth K S, Brown T G. Focusing of high numerical aperture cylindrical-vector beams[J]. Optics Express, 7, 77-87(2000).

    [96] Varin C, Piché M. Acceleration of ultra-relativistic electrons using high-intensity TM01 laser beams[J]. Applied Physics B, 74, s83-s88(2002).

    [97] Novotny L, Beversluis M R, Youngworth K S et al. Longitudinal field modes probed by single molecules[J]. Physical Review Letters, 86, 5251-5254(2001).

    [98] Ciattoni A, Crosignani B, Di Porto P et al. Azimuthally polarized spatial dark solitons: exact solutions of Maxwell’s equations in a Kerr medium[J]. Physical Review Letters, 94, 073902(2005).

    [99] Hu M X, Wang Z Q, Li X P et al. Metasurface polarization information encoding[J]. Chinese Journal of Lasers, 50, 1813010(2023).

    [100] Xia T, Xie Z W, Yuan X C. Far-field polarized holographic encryption by metasurface zone plates[J]. Chinese Journal of Lasers, 50, 1813015(2023).

    [101] Bouhelier A, Beversluis M, Hartschuh A et al. Near-field second-harmonic generation induced by local field enhancement[J]. Physical Review Letters, 90, 013903(2003).

    [102] Tang Y T, Zhang X C, Hu Z X et al. Nonlinear photonic metasurfaces: fundamentals and applications[J]. Acta Optica Sinica, 43, 0822002(2023).

    [103] Zhan Q W. Trapping metallic Rayleigh particles with radial polarization[J]. Optics Express, 12, 3377-3382(2004).

    [104] Kozawa Y, Sato S. Generation of a radially polarized laser beam by use of a conical Brewster prism[J]. Optics Letters, 30, 3063-3065(2005).

    [105] Li J L, Ueda K I, Musha M et al. Converging-axicon-based radially polarized ytterbium fiber laser and evidence on the mode profile inside the gain fiber[J]. Optics Letters, 32, 1360-1362(2007).

    [106] Toussaint K C, Park S, Jureller J E et al. Generation of optical vector beams with a diffractive optical element interferometer[J]. Optics Letters, 30, 2846-2848(2005).

    [107] Bomzon Z, Biener G, Kleiner V et al. Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings[J]. Optics Letters, 27, 285-287(2002).

    [108] Moh K J, Yuan X C, Bu J et al. Direct noninterference cylindrical vector beam generation applied in the femtosecond regime[J]. Applied Physics Letters, 89, 251114(2006).

    [109] Zhao H, Wang X K, Quan B G et al. High-efficiency phase and polarization modulation metasurfaces[J]. Advanced Photonics Research, 3, 2100199(2022).

    [110] Zhao H, Zhang C M, Guo J Y et al. Metasurface hologram for multi-image hiding and seeking[J]. Physical Review Applied, 12, 054011(2019).

    [111] Wang X L, Ding J P, Ni W J et al. Generation of arbitrary vector beams with a spatial light modulator and a common path interferometric arrangement[J]. Optics Letters, 32, 3549-3551(2007).

    [112] Wang H T, Wang X L, Li Y N et al. A new type of vector fields with hybrid states of polarization[J]. Optics Express, 18, 10786-10795(2010).

    [113] Milione G, Sztul H I, Nolan D A et al. Higher-order Poincaré sphere, stokes parameters, and the angular momentum of light[J]. Physical Review Letters, 107, 053601(2011).

    [114] Ren Z C, Kong L J, Li S M et al. Generalized poincaré sphere[J]. Optics Express, 23, 26586-26595(2015).

    [115] Moreno I, Davis J A, Sánchez-López M M et al. Nondiffracting Bessel beams with polarization state that varies with propagation distance[J]. Optics Letters, 40, 5451-5454(2015).

    [116] Davis J A, Moreno I, Badham K et al. Nondiffracting vector beams where the charge and the polarization state vary with propagation distance[J]. Optics Letters, 41, 2270-2273(2016).

    [117] Fu S Y, Zhang S K, Gao C Q. Bessel beams with spatial oscillating polarization[J]. Scientific Reports, 6, 30765(2016).

    [118] Li P, Zhang Y, Liu S et al. Quasi-Bessel beams with longitudinally varying polarization state generated by employing spectrum engineering[J]. Optics Letters, 41, 4811-4814(2016).

    [119] Li P, Zhang Y, Liu S et al. Generation and self-healing of vector Bessel-Gauss beams with variant state of polarizations upon propagation[J]. Optics Express, 25, 5821-5831(2017).

    [120] Li P, Wu D J, Zhang Y et al. Polarization oscillating beams constructed by copropagating optical frozen waves[J]. Photonics Research, 6, 756-761(2018).

    [121] Zang X F, Ding H Z, Intaravanne Y et al. A multi-foci metalens with polarization-rotated focal points[J]. Laser & Photonics Reviews, 13, 1900182(2019).

    [122] Wang R X, Intaravanne Y, Li S T et al. Metalens for generating a customized vectorial focal curve[J]. Nano Letters, 21, 2081-2087(2021).

    [123] Li J E, Li J T, Yue Z et al. Structured vector field manipulation of terahertz wave along the propagation direction based on dielectric metasurfaces[J]. Laser & Photonics Reviews, 16, 2200325(2022).

    [124] Zhang F, Pu M B, Guo Y H et al. Synthetic vector optical fields with spatial and temporal tunability[J]. Science China Physics, Mechanics & Astronomy, 65, 254211(2022).

    [126] Dorrah A H, Rubin N A, Zaidi A et al. Metasurface optics for on-demand polarization transformations along the optical path[J]. Nature Photonics, 15, 287-296(2021).

    [127] Guo J Y, Wang X K, He J W et al. Generation of radial polarized Lorentz beam with single layer metasurface[J]. Advanced Optical Materials, 6, 1700925(2018).

    [128] Liu Z X, Liu Y Y, Ke Y G et al. Generation of arbitrary vector vortex beams on hybrid-order Poincaré sphere[J]. Photonics Research, 5, 15-21(2016).

    [129] Bao Y J, Ni J C, Qiu C W. A minimalist single-layer metasurface for arbitrary and full control of vector vortex beams[J]. Advanced Materials, 32, 1905659(2020).

    [130] Liu M Z, Huo P C, Zhu W Q et al. Broadband generation of perfect Poincaré beams via dielectric spin-multiplexed metasurface[J]. Nature Communications, 12, 2230(2021).

    [131] Diddams S A, Vahala K, Udem T. Optical frequency combs: coherently uniting the electromagnetic spectrum[J]. Science, 369, eaay3676(2020).

    [132] Shen Y J, Rosales-Guzmán C. Nonseparable states of light: from quantum to classical[J]. Laser & Photonics Reviews, 16, 2100533(2022).

    [133] Papasimakis N, Fedotov V A, Savinov V et al. Electromagnetic toroidal excitations in matter and free space[J]. Nature Materials, 15, 263-271(2016).

    [134] Shen Y J, Wang X J, Xie Z W et al. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities[J]. Light: Science & Applications, 8, 90(2019).

    [135] Kondakci H E, Abouraddy A F. Airy wave packets accelerating in space-time[J]. Physical Review Letters, 120, 163901(2018).

    [136] Shaltout A M, Lagoudakis K G, van de Groep J et al. Spatiotemporal light control with frequency-gradient metasurfaces[J]. Science, 365, 374-377(2019).

    [137] Cao Q, Chen J, Lu K Y et al. Sculpturing spatiotemporal wavepackets with chirped pulses[J]. Photonics Research, 9, 2261-2264(2021).

    [138] Cao Q, Chen J, Lu K Y et al. Non-spreading Bessel spatiotemporal optical vortices[J]. Science Bulletin, 67, 133-140(2022).

    [139] Wan C H, Shen Y J, Chong A et al. Scalar optical hopfions[J]. eLight, 2, 1-7(2022).

    [140] Shen Y, Zhan Q, Wright L G et al. Roadmap on spatiotemporal light fields[J]. Journal of Optics, 25, 093001(2023).

    [141] Rego L, Dorney K M, Brooks N J et al. Generation of extreme-ultraviolet beams with time-varying orbital angular momentum[J]. Science, 364, eaaw9486(2019).

    [142] Mounaix M, Fontaine N K, Neilson D T et al. Time reversed optical waves by arbitrary vector spatiotemporal field generation[J]. Nature Communications, 11, 5813(2020).

    [143] Fontaine N K, Ryf R, Chen H et al. Packaged 45-mode multiplexers for a 50-μm graded index fiber[C](2018).

    [144] Fontaine N K, Ryf R, Chen H S et al. Laguerre-Gaussian mode sorter[J]. Nature Communications, 10, 1865(2019).

    [145] Chong A, Wan C H, Chen J et al. Generation of spatiotemporal optical vortices with controllable transverse orbital angular momentum[J]. Nature Photonics, 14, 350-354(2020).

    [146] Wan C H, Chen J, Chong A et al. Generation of ultrafast spatiotemporal wave packet embedded with time-varying orbital angular momentum[J]. Science Bulletin, 65, 1334-1336(2020).

    [147] Wan C H, Cao Q, Chen J et al. Toroidal vortices of light[J]. Nature Photonics, 16, 519-522(2022).

    [148] Zhao Z, Song H, Zhang R Z et al. Dynamic spatiotemporal beams that combine two independent and controllable orbital-angular-momenta using multiple optical-frequency-comb lines[J]. Nature Communications, 11, 4099(2020).

    Tools

    Get Citation

    Copy Citation Text

    Yan Zhang, Tong Nan. Generations of Structured Light (Invited)[J]. Laser & Optoelectronics Progress, 2024, 61(1): 0126001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Physical Optics

    Received: Sep. 25, 2023

    Accepted: Nov. 14, 2023

    Published Online: Feb. 6, 2024

    The Author Email: Yan Zhang (yzhang@cnu.edu.cn)

    DOI:10.3788/LOP232183

    CSTR:32186.14.LOP232183

    Topics