Journal of Infrared and Millimeter Waves, Volume. 40, Issue 1, 1(2021)

Quantum well micropillar arrays with low filling factor for enhanced infrared absorption

Xin-Hui YE1,2, Tian XIE1,2, Hui XIA2, Xi-Ren CHEN2, Ju-Zhu LI2,3, Shuai-Jun ZHANG1,2, Xin-Yang JIANG2,4, Wei-Jie DENG2,4, Wen-Jing WANG2,3, Yu-Ying LI2, Wei-Wei LIU2, Fang LIU1、*, and Tian-Xin LI2、**
Author Affiliations
  • 1School of Materials Science and Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China
  • 2State Key Laboratory of Infrared Physics,Shanghai Institute of Technical Physics,Chinese Academy of Sciences,Shanghai 200083,China
  • 3Mathematics and Science College,Shanghai Normal University,Shanghai 200234,China
  • 4School of Physical Science and Technology,ShanghaiTech University,Shanghai 201210,China
  • show less
    References(26)

    [1] Goldberg A, Choi K K, Jhabvala M et al. Large-format and multispectral QWIP infrared focal plane arrays[J]. SPIE, 5074, 83-94(2003).

    [2] Tan C L, Mohseni H. Emerging technologies for high performance infrared detectors[J]. Nanophotonics, 7, 169-197(2017).

    [3] Liu H C, Buchanan M, Wasilewski Z R. How good is the polarization selection rule for intersubband transitions?[J]. Applied Physics Letters, 46, 1156-1158(1985).

    [4] Andersson J Y, Lundqvist L, Paska Z F. Quantum efficiency enhancement of AlGaAs/GaAs quantum well infrared detectors using a waveguide with a grating coupler[J]. Applied Physics Letters, 58, 2264-2266(1991).

    [5] Sarusi G, Levine B F, Pearton S J et al. Improved performance of quantum well infrared photodetectors using random scattering optical coupling[J]. Applied Physics Letters, 64, 960-962(1994).

    [6] Xiong Da-Yuan, Zeng Yong, Li Ning et al. The grating optical coupling of the very long wavelength quantum well infrared photodetectors[J]. Acta Physica Sinica, 55, 3642-3648(2006).

    [7] Rogalski A. Quantum well photoconductors in infrared detector technology[J]. Journal of Applied Physics, 93, 4355-4391(2003).

    [8] Yao J, Tsui D C, Choi K K. Noise characteristics of quantum-well infrared photodetectors at low temperatures[J]. Applied Physics Letters, 76, 206-208(2000).

    [9] Singh A, Manasreh M O. Quantum well and superlattice heterostructures for space-based long wavelength infrared photo detectors[J]. SPIE, 2397, 193-209(1995).

    [10] Wang Han, Li Shi-Long, Zhen Hong-Lou et al. A tubular quantum well infrared photodetector under vertically-incident light coupling[J]. J. Infrared Millim.Waves, 36, 191-195(2017).

    [11] Tang W W, Zhou J, Zheng Y L et al. All-dielectric resonant waveguide based quantum well infrared photodetectors for hyperspectral detection[J]. Optics Communications, 427, 196-201(2018).

    [12] Zhen T, Zhou J, Li Z F et al. Realization of both high absorption of active materials and low ohmic loss in plasmonic cavities[J]. Advanced Optical Material, 7, 1801627(1-8)(2019).

    [13] Palaferri D, todorov Y, Bigioli A et al. Room-temperature nine-µm-wavelength photo-detectors and GHz-frequency heterodyne receivers[J]. Nature, 556, 85-88(2018).

    [14] Hideki H T, Mano M, Kasaya T et al. Synchronously wired infrared antennas for resonant single-quantum-well photodetection up to room temperature[J]. Nature Communications, 565(2020).

    [15] Hu Wei-Da, Li Qing, Chen Xiao-Shuang et al. Recent progress on advanced infrared photodetectors[J]. Acta Physica Sinica, 68, 7-41(2019).

    [16] Yu N, Capasso F. Flat optics with designer metasurfaces[J]. Nature Materials, 13, 139-150(2014).

    [17] Yamada I, Ishihara T, Yanagisawa J. Reflective waveplate with subwavelength grating structure[J]. Japanese Journal of Applied Physics, 54, 092203(2015).

    [18] Kosulnikov S Y, Yankovskaya E A, Maslovski S I et al. Optimal filling factor of nanorod lenses for subwavelength imaging[J]. Physical Review A, 84, 065801(2011).

    [19] Andrews S R, Miller B A. Experimental and theoretical studies of the performance of quantum-well infrared photodetectors[J]. Journal of Applied Physics, 70, 993-1003(1991).

    [20] Yang Jun. Synthesis and properties of novel Benzocyclobutene monomers[D](2012).

    [21] Skauli T, Kuo P S, Vodopyanov K L et al. Improved dispersion relations for GaAs and applications to nonlinear optics[J]. Journal of Applied Physics, 94, 6447-6455(2003).

    [22] Dini D, Köhler R, Tredicucci A et al. Microcavity Polariton Splitting of Intersubband Transitions[J]. Physical Review Letters, 90, 116401(2003).

    [23] Garnett E, Yang P. Light Trapping in Silicon Nanowire Solar Cells[J]. Nano Letters, 10, 1082-1087(2010).

    [24] Tibuleac S.. Guided-mode resonance reflection and transmission filters in the optical and microwave spectral ranges[D](2001).

    [25] Nga Chen Y, Todorov Y, Askenazi B et al. Antenna-coupled microcavities for enhanced infrared photo-detection. Applied Physics Letters, 104, 031113(2014).

    [26] Mikulla M, Schneider H, Benkhelifa F et al. Passivation of III/V-based compound semiconductor devices using high-density plasma deposited silicon nitride films[J]. Proceedings-Electrochemical Society, 338-349(2005).

    Tools

    Get Citation

    Copy Citation Text

    Xin-Hui YE, Tian XIE, Hui XIA, Xi-Ren CHEN, Ju-Zhu LI, Shuai-Jun ZHANG, Xin-Yang JIANG, Wei-Jie DENG, Wen-Jing WANG, Yu-Ying LI, Wei-Wei LIU, Fang LIU, Tian-Xin LI. Quantum well micropillar arrays with low filling factor for enhanced infrared absorption[J]. Journal of Infrared and Millimeter Waves, 2021, 40(1): 1

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Mar. 30, 2020

    Accepted: --

    Published Online: Aug. 30, 2021

    The Author Email: Fang LIU (liufang@usst.edu.cn), Tian-Xin LI (txli@mail.sitp.ac.cn)

    DOI:10.11972/j.issn.1001-9014.2021.01.001

    Topics