Journal of the Chinese Ceramic Society, Volume. 52, Issue 9, 2789(2024)

Fabrication and Performance of SiC Ceramic Fibers Containing Yttrium and Aluminum

ZHANG Xiao, CHEN Jianjun*, LI Xiaohong, ZHANG Mengna, and LU Junchong
Author Affiliations
  • [in Chinese]
  • show less
    References(26)

    [2] [2] ICHIKAWA H. Advances in SiC fibers for high temperature applications[M]//Advanced Inorganic Fibrous Composites V. Stafa:Trans Tech Publications Ltd., 2006: 17–23.

    [7] [7] YAJIMA S, HAYASHI J, OMORI M. Continuous silicon carbide fiber of high tensile strength[J]. Chem Lett, 1975, 4(9): 931–934.

    [8] [8] YAJIMA S, HAYASHI J, OMORI M, et al. Development of a silicon carbide fibre with high tensile strength[J]. Nature, 1976, 261: 683–685.

    [9] [9] YAJIMA S, OKAMURA K, HAYASHI J, et al. Synthesis of continuous SiC fibers with high tensile strength[J]. J Am Ceram Soc,1976, 59(7–8): 324–327.

    [10] [10] YAJIMA S, OKAMURA K, HAYASHI J, et al. Synthesis of continuous SiC fibers with high tensile strength[J]. J Am Ceram Soc,1976, 59(7/8): 324–327.

    [11] [11] ZHENG C M, LI X D, WANG H, et al. Evolution of crystallization and its effects on properties during pyrolysis of Si–Al–C–(O) precursor fibers[J]. J Mater Sci, 2008, 43(9): 3314–3319.

    [14] [14] ISHIKAWA T, ODA H. Defect control of SiC polycrystalline fiber synthesized from poly-aluminocarbosilane[J]. J Eur Ceram Soc, 2016,36(15): 3657–3662.

    [15] [15] ISHIKAWA T, ODA H. Structural control aiming for high-performance SiC polycrystalline fiber[J]. J Korean Ceram Soc,2016, 53(6): 615–621.

    [16] [16] ISHIKAWA T, KOHTOKU Y, KUMAGAWA K, et al. High-strength alkali-resistant sintered SiC fibre stable to 2, 200 ℃[J]. Nature, 1998,391(6669): 773–775.

    [20] [20] GOU Y Z, JIAN K, WANG H, et al. Fabrication of nearly stoichiometric polycrystalline SiC fibers with excellent high-emperature stability up to 1 900 ℃[J]. J Am Ceram Soc, 2018,101(5): 2050–2059.

    [21] [21] USUKAWA R, ISHIKAWA T. High-performance SiC?polycrystalline fiber with smooth surface[J]. Ceramics, 2018, 1(1): 165–174.

    [22] [22] WANG P R, GOU Y Z, WANG H, et al. Revealing the formation mechanism of the skin?core structure in nearly stoichiometric polycrystalline SiC fibers[J]. J Eur Ceram Soc, 2020, 40(6): 2295–2305.

    [23] [23] YANG D X, SONG Y C, YU Y X, et al. Fabrication of SiC fibres from yttrium-containing polycarbosilane[J]. Trans Nonferrous Met Soc China, 2012, 22(4): 879–886.

    [26] [26] NEHER R, HERRMANN M, BRANDT K, et al. Liquid phase formation in the system SiC, Al2O3, Y2O3[J]. J Eur Ceram Soc, 2011,31(1/2): 175–181.

    [28] [28] YANG D X, SONG Y C. Preparation and properties of SiC fibers containing yttrium and aluminum[J]. Key Eng Mater, 2008, 368–372:827–830.

    [31] [31] COETSEE E, TERBLANS J J, SWART H C. XPS analysis for degraded Y2SiO5: Ce phosphor thin films[J]. Appl Surf Sci, 2010,256(22): 6641–6648.

    [32] [32] CAO F, KIM D P, LI X D, et al. Synthesis of polyaluminocarbosilane and reaction mechanism study[J]. J Appl Polym Sci, 2002, 85(13):2787–2792.

    [33] [33] HONG J, CHO K Y, SHIN D G, et al. Low-temperature chemical vapour curing using iodine for fabrication of continuous silicon carbide fibres from low-molecular-weight polycarbosilane[J]. J Mater Chem A,2014, 2(8): 2781–2793.

    [34] [34] HONG J, CHO K Y, SHIN D G, et al. Iodine diffusion during iodine-vapor curing and its effects on the morphology ofpolycarbosilane/silicon carbide fibers[J]. J Appl Polym Sci, 2015,132(47): 42687.

    [35] [35] HONG J, CHO K Y, SHIN D G, et al. Room temperature reaction of polycarbosilane with iodine under different atmospheres for polymer-derived silicon carbide fibres[J]. RSC Adv, 2015, 5(102):83847–83856.

    [36] [36] ZHANG H, GE M, SHUI H T, et al. Investigations on the thermal behaviours of SiC?ZrC continuous ceramic fibres[J]. J Eur Ceram Soc,2021, 41(9): 4689–4696.

    [37] [37] CHEN Y H, CHEN Z K, ZHANG R Q, et al. Structural evolution and mechanical properties of Cansas?III SiC fibers after thermal treatment up to 1 700 ℃[J]. J Eur Ceram Soc, 2021, 41(10): 5036–5045.

    [38] [38] WEN Q B, YU Z J, RIEDEL R. The fate and role of in situ formed carbon in polymer-derived ceramics[J]. Prog Mater Sci, 2020, 109:100623.

    [39] [39] USUKAWA R, ODA H, ISHIKAWA T. Conversion process of amorphous Si?Al?C?O fiber into nearly stoichiometric SiC polycrystalline fiber[J]. J Korean Ceram Soc, 2016, 53(6): 610–614.

    [40] [40] BUET E, SAUDER C, POISSONNET S, et al. Influence of chemical and physical properties of the last generation of silicon carbide fibres on the mechanical behaviour of SiC/SiC composite[J]. J Eur Ceram Soc, 2012, 32(3): 547–557.

    [42] [42] PAWLAK D A, WO?NIAK K, FRUKACZ Z, et al. ESCA studies of yttrium aluminum garnets[J]. J Phys Chem B, 1999, 103(9):1454–1461.

    Tools

    Get Citation

    Copy Citation Text

    ZHANG Xiao, CHEN Jianjun, LI Xiaohong, ZHANG Mengna, LU Junchong. Fabrication and Performance of SiC Ceramic Fibers Containing Yttrium and Aluminum[J]. Journal of the Chinese Ceramic Society, 2024, 52(9): 2789

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jan. 10, 2024

    Accepted: --

    Published Online: Nov. 8, 2024

    The Author Email: CHEN Jianjun (chen@zstu.edu.cn)

    DOI:10.14062/j.issn.0454-5648.20240272

    Topics