Chinese Journal of Lasers, Volume. 49, Issue 17, 1714001(2022)

Inverse Design of Metamaterial Absorber Sensor Based on Particle Swarm Optimization

Ding Han, Ziyin Ma, Junlin Wang*, Xin Wang**, and Suyalatu Liu
Author Affiliations
  • College of Electronic Information Engineering, Inner Mongolia University, Hohhot 010021, Inner Mongolia, China
  • show less
    References(26)

    [1] Xu W D, Xie L J, Ying Y B. Mechanisms and applications of terahertz metamaterial sensing: a review[J]. Nanoscale, 9, 13864-13878(2017).

    [2] Tantiwanichapan K, Durmaz H. Herbicide/pesticide sensing with metamaterial absorber in THz regime[J]. Sensors and Actuators A: Physical, 331, 112960(2021).

    [3] Wang X, Wang J L. Terahertz metamaterial absorber sensor based on three-dimensional split-ring resonator array and microfluidic channel[J]. Acta Optica Sinica, 40, 1904001(2020).

    [4] Ren A F, Zahid A, Fan D et al. State-of-the-art in terahertz sensing for food and water security: a comprehensive review[J]. Trends in Food Science & Technology, 85, 241-251(2019).

    [5] Gallot G. Terahertz sensing in biology and medicine[J]. Photoniques, 53-58(2020).

    [6] Qi L M, Liu C, Shah S M A. A broad dual-band switchable graphene-based terahertz metamaterial absorber[J]. Carbon, 153, 179-188(2019).

    [7] Duan G W, Schalch J, Zhao X G et al. A survey of theoretical models for terahertz electromagnetic metamaterial absorbers[J]. Sensors and Actuators A: Physical, 287, 21-28(2019).

    [8] Mishra R, Sahu A, Panwar R. Cascaded graphene frequency selective surface integrated tunable broadband terahertz metamaterial absorber[J]. IEEE Photonics Journal, 11, 18593180(2019).

    [9] Xiong H, Tang M C, Li M et al. Equivalent circuit method analysis of graphene-metamaterial (GM) absorber[J]. Plasmonics, 13, 857-862(2018).

    [10] Massa A, Marcantonio D, Chen X D et al. DNNs as applied to electromagnetics, antennas, and propagation: a review[J]. IEEE Antennas and Wireless Propagation Letters, 18, 2225-2229(2019).

    [11] Khatib O, Ren S M, Malof J et al. Deep learning the electromagnetic properties of metamaterials: a comprehensive review[J]. Advanced Functional Materials, 31, 2101748(2021).

    [12] Qiu T S, Shi X, Wang J F et al. Deep learning: a rapid and efficient route to automatic metasurface design[J]. Advanced Science, 6, 1900128(2019).

    [13] Shi X, Qiu T S, Wang J F et al. Metasurface inverse design using machine learning approaches[J]. Journal of Physics D: Applied Physics, 53, 275105(2020).

    [14] Jiang J Q, Fan J A. Simulator-based training of generative neural networks for the inverse design of metasurfaces[J]. Nanophotonics, 9, 1059-1069(2019).

    [15] Ma J, Huang Y J, Pu M B et al. Inverse design of broadband metasurface absorber based on convolutional autoencoder network and inverse design network[J]. Journal of Physics D: Applied Physics, 53, 464002(2020).

    [16] Zhu R, Qiu T, Wang J et al. Phase-to-pattern inverse design paradigm for fast realization of functional metasurfaces via transfer learning[J]. Nature Communications, 12, 2974(2021).

    [17] Jia Y X, Wang J F, Chen W et al. Research progress on rapid optimization design methods of metamaterials based on intelligent algorithms[J]. Journal of Radars, 10, 220-239(2021).

    [18] Hou Z Y, Tang T T, Shen J et al. Prediction network of metamaterial with split ring resonator based on deep learning[J]. Nanoscale Research Letters, 15, 83(2020).

    [19] Ghorbani F, Beyraghi S, Shabanpour J et al. Deep neural network-based automatic metasurface design with a wide frequency range[J]. Scientific Reports, 11, 7102(2021).

    [20] Zhang Q, Liu C, Wan X et al. Machine-learning designs of anisotropic digital coding metasurfaces[J]. Advanced Theory and Simulations, 2, 1800132(2019).

    [21] Zhang H J, Wang Y, Zhao H G et al. Accelerated topological design of metaporous materials of broadband sound absorption performance by generative adversarial networks[J]. Materials & Design, 207, 109855(2021).

    [22] Shao T Y, Gu J Q, Shi W Q. Automated design study of guided-mode resonance filters working at terahertz frequencies[J]. Chinese Journal of Lasers, 48, 2014001(2021).

    [23] Zhang Q, Wan X, Liu S et al. Shaping electromagnetic waves using software-automatically-designed metasurfaces[J]. Scientific Reports, 7, 3588(2017).

    [24] Zhang Y J, Wang S F, Zhong G C et al. Metamaterial-based terahertz multi-band sensors integrated with microfluidic channels[J]. Chinese Journal of Lasers, 46, 0614038(2019).

    [25] Zhang Y P, Li T T, Lü H H et al. Study on sensing characteristics of I-shaped terahertz metamaterial absorber[J]. Acta Physica Sinica, 64, 117801(2015).

    [26] Hu X, Xu G Q, Wen L et al. Metamaterial absorber integrated microfluidic terahertz sensors[J]. Laser & Photonics Reviews, 10, 962-969(2016).

    Tools

    Get Citation

    Copy Citation Text

    Ding Han, Ziyin Ma, Junlin Wang, Xin Wang, Suyalatu Liu. Inverse Design of Metamaterial Absorber Sensor Based on Particle Swarm Optimization[J]. Chinese Journal of Lasers, 2022, 49(17): 1714001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: terahertz technology

    Received: Nov. 25, 2021

    Accepted: Dec. 31, 2021

    Published Online: Aug. 9, 2022

    The Author Email: Wang Junlin (wangjunlin@imu.edu.cn), Wang Xin (mems_wang@163.com)

    DOI:10.3788/CJL202249.1714001

    Topics