Laser Technology, Volume. 47, Issue 5, 579(2023)
Coupled wave theory of extracavity pumped dual-wavelength Raman lasers
[1] [1] WU X Sh, ZHANG P, LIU B, et al. Research progress of solid-state self-Raman yellow lasers[J]. Laser Technology, 2018, 42(5): 673-680 (in Chinese) .
[3] [3] GAO F L, ZHANG X Y, CONG Zh H, et al. Tunable Stokes laser based on the cascaded stimulated polariton scattering and stimulated Raman scattering in RbTiOPO4 crystal[J]. Optics Letters, 2020, 45(4): 861-864.
[4] [4] ZHU H Y, DUAN Y M, ZHANG G, et al. Yellow-light generation of 5.7 W by intracavity doubling self-Raman laser of YVO4/Nd∶YVO4 composite[J]. Optics Letters, 2009, 34(18):2763-2765.
[5] [5] SU F F, WU F Q, HAO D Zh, et al. LD pumped passively Q-switched Nd∶YAG/GdVO4 intracavity Raman laser[J]. Laser Technology, 2011, 35(3): 398-402 (in Chinese).
[7] [7] ZHANG H J, LI P, WANG Q P, et al. High-power dual-wavelength eye-safe ceramic Nd∶YAG/SrWO4 Raman laser operating at 1501 and 1526 nm [J]. Applied Optics, 2014, 53(31):7189-7194.
[8] [8] LI L, ZHANG X Y, LIU Zh J, et al. A high power diode-side-pumped Nd∶YAG/BaWO4 Raman laser at 1103 nm [J]. Laser Physics, 2013,23(4):045402.
[9] [9] LIN J, PASK H M. Cascaded self-Raman lasers based on 382 cm-1 shift in Nd∶GdVO4[J]. Optics Express, 2012, 20(14):15180-15185.
[10] [10] BAI F, JIAO Zh Y, XU X F, et al. High power Stokes generation based on a secondary Raman shift of 259 cm-1 of Nd∶YVO4 self-Raman crystal[J]. Optics & Laser Technology, 2019, 109: 55-60.
[11] [11] SHARMA U, KIM C S, KANG J U. Highly stable tunable dual-wavelength Q-switched fiber laser for DIAL applications[J]. IEEE Photonics Technology Letters, 2004, 16(5): 1277-1279.
[12] [12] AKBARI R, ZHAO H T, MAJOR A. High-power continuous-wave dual-wavelength operation of a diode-pumped Yb∶KGW laser[J]. Optics Letters, 2016, 41(7): 1601-1604.
[13] [13] DENG Q, WU D Ch, KUANG Zh Q, et al. 532 nm/660 nm dual wavelength lidar for self-calibration of water vapor mixing ratio [J]. Infrared and Laser Engineering, 2018, 47(12): 1230004 (in Chinese) .
[15] [15] XIE Z, LOU S H, DUAN Y M, et al. Passively Q-switched KTA cascaded Raman laser with 234 and 671 cm-1 shifts [J]. Applied Sciences, 2021, 11(15): 6895.
[16] [16] CHE X H, XU J, LI H D, et al. Analysis of actively Q-switched infrared Raman lasers with crystalline media of multi-Raman-modes[J]. Infrared Physics & Technology, 2020, 111:103474.
[17] [17] XU J, CHE X H, LI H D, et al. Numerical simulation of solid-state lasers based on secondary Raman modes[J]. Chinese Journal of Lasers, 2020, 47(5):0501001 (in Chinese) .
[18] [18] LV X L, CHEN J C, PENG Y J, et al. Investigation of high-energy extracavity Raman laser oscillator and single-pass Raman generator based on potassium gadolinium tungstate (KGW) crystal[J]. Optics & Laser Technology, 2021, 140:107023.
[19] [19] FRANK M, SMETANIN S N, JELINEK M, et al. Efficient synchronously-pumped all-solid-state Raman laser at 1178 and 1227 nm on stretching and bending anionic group vibrations in a SrWO4 crystal with pulse shortening down to 1.4 ps[J]. Optics & Laser Technology, 2019, 119:105660.
[20] [20] DASHKEVICH V I, RUSAK A A, ORLOVICH V A, et al. Eye-safe extracavity Raman laser: A passive way of eliminating optical feedback with double-pass pumping[J]. Journal of Applied Spectroscopy, 2017, 83(6):945-950.
[21] [21] SMETANIN S N, DOROSHENKO M E, IVLEVA L I, et al. Low-threshold parametric Raman generation of high-order Raman components in crystals[J]. Applied Physics, 2014, B117(1):225-234.
[22] [22] BOYD R. Nonlinear optics[M]. 3rd ed. New York,USA: Academic Press, 2008:473-488.
[23] [23] PENZKOFER A, LAUBEREAU A, KAISER W. High intensity Raman interactions[J]. Progress in Quantum Electronics, 1979, 6(2):55-140.
Get Citation
Copy Citation Text
WANG Cong, LYU Dongxiang. Coupled wave theory of extracavity pumped dual-wavelength Raman lasers[J]. Laser Technology, 2023, 47(5): 579
Category:
Received: Aug. 31, 2022
Accepted: --
Published Online: Dec. 11, 2023
The Author Email: